İçeriğe atla

Enerji seviyesi

Enerji seviyesi, atom çekirdeğinin etrafında katman katman biçiminde bulunan kısımların her biridir. Bu yörüngelerde elektronlar bulunur.[1] Yörüngenin numarası; 1, 2, 3, 4, ... gibi sayı değerlerini alabilir. Yörünge numarasına baş kuantum sayısı da denir ve "n" ile gösterilir. Yörünge numarası ile yörüngenin çekirdeğe uzaklığı doğru orantılıdır.[1]

Bir yörüngede kaç elektron bulunduğunu hesaplamak için 2•n2 parametresi kullanılır.

n, burada "yörünge numarası" veya "baş kuantum sayısı" adıyla anılır.

Kuantum mekaniği sistemi veya bağlanmış (uzayda hapsedilmiş) parçacığı, sadece bazı özel enerji değerleriyle ilgilenir. Bu herhangi bir enerji alabilen klasik parçacıklarla çelişir. Bu farklı değerlere enerji seviyeleri denir. Bu terim genel olarak çekirdeğin elektrik alanıyla bağlanmış molekül ve atomların içindeki elektronların enerji seviyeleri için kullanılır. Ama çekirdeğin enerji seviyelerine veya moleküllerdeki titreşimsel ve dönmeli enerji seviyelerine işaret eder. Böyle özel enerji seviyeleriyle olan enerji yelpazesi sistemine de nicelikleşmiş denir.

Eğer potansiyel enerji molekül veya atomik çekirdekten sonsuz mesafede sıfırlanırsa, bağlanmış elektron durumu, negatif potansiyel enerji durumu vardır.

Eğer bir atom, molekül ya da iyon mümkün olan en düşük enerji seviyesinde ise elektronların temel seviyede olduğu söylenir. Eğer daha yüksek enerji seviyelerinde ise elektronların uyarılmış seviyede olduğu söylenir. Eğer birden fazla kuantum mekanik durumu aynı enerjideyse enerji seviyeleri yozlaşmıştır (bozulmuştur). O zaman bunlara yozlaşmış enerji seviyeleri denir.

Bir atomdaki elektronların enerji seviyeleri: temel seviye ve uyarılmış seviyelerdir. Enerjiyi emdikten sonra bir elektron temel seviyeden daha yüksek enerjili bir uyarılmış seviyeye zıplayabilir.

Açıklama

Nicelleşmiş enerji seviyeleri parçacığın enerjisi ve dalga uzunluğu arasındaki ilişkiden doğar. Atomun elektronlarındaki gibi hapsolmuş parçacık için, dalga işlevi duran dalgalar şeklindedir. Sadece (enerjili durgun durumlar) dalga uzunlukları integral rakamlarıyla ilişkili enerjili durgun durumlar var olur. Diğer durumlarda dalgalar yıkıcı olarak müdahale eder, bu da sıfır olasılık yoğunluğu ile sonuçlanır. Matematik olarak enerji seviyelerinin nasıl oluştuğunu gösteren temel örnekler, kutuda parçacık ve kuantum uyumlu titreştiricidir.

Tarihçe

Atomdaki nicelleleşmenin ilk kanıtı 1800'lerin başında Joseph von Fraunhofer ve William Hyde Wollaston tarafından Güneş'ten gelen ışınlardaki spektrum çizgilerinin gözlemlenmesiydi. Enerji seviyeleri fikri Danimarkalı fizikçi Niels Bohr tarafından 1913'te Bohr Modeli'nde ortaya atılmıştır. Enerji seviyelerinin Schrödinger Denklemi terimleri ile açıklandığı modern kuantum mekaniksel teori Erwin Schrödinger ve Werner Heisenberg 1926'da geliştirilmiştir.[]

Atomlar

İçsel Enerji Seviyeleri

Yörünge durumu enerji seviyesi:çekirdek+ bir elektronlu atom/iyon

Farklı seviyelerdeki elektronların enerjisinin formülleri, elektron atomdan tamamen ayrıldığı zaman enerji için sıfır noktası oluşur, i.e elektronun temek kuantum sayısı n = ∞ olduğu zaman. Farz et ki hidrojen benzeri atomun (İON) atomik ekseninde bir elektron var. Durum enerjisi çoğunlukla çekirdek(pozitif) ile elektronun(negatif) elektriksel etkileşimi ile çoğunlukla belirlenir.[]

Çekirdeğin etrafındaki bir elektronun enerji seviyeleri:

(tipik olarak 1 eV ve 103 eV arasında), R Rydberg sabitidir, Z atom numarasıdır, n temel kuantum sayısı, h Planck sabiti ve c ışık hızıdır . Hidrojen gibi atomlar(iyonlar) için, the Rydberg seviyeleri temel kuantum sayısına n bağlıdır.

Bu denklem hidrojen gibi herhangi bir element için Rydberg formülü (aşağıda gösterilen) ile E = h ν = h c / λ birleştirerek elde edilir. Baş kuantum sayısı n yukarida = n1 Rydberg formündeki ve n2 = ∞ (bir foton yaydıktan sonra elektronun enerji seviyesinin temel kuantum sayısı iner). Rydberg formülü deneysel emisyon spektrumu verisinden türetilir.[]

Öz değerler olarak enerji seviyelerini elde etmek için özgün işlev gibi dalga işlevi kullanarak zamandan bağımsız Schrödinger denklemi ile kinetik enerji Hamiltonian öperatöründen eş bir formül mekanik olarak türetilebilir.[]

Bir elektronun diğer elektronlarla elektriksel etkileşimini içeren birden çok elektron atomları

Eğer atomun etrafında birden fazla elektron varsa elektron-elektron etkileşimleri enerji seviyesini yükseltir. Eğer elektron dalga fonksiyonlarının uzaysal üst üste gelmesi zayıf ise bu etkileşimler genelde ihmal edilir.

Birden çok elektronlu atomlar için atomlar arası etkileşim önceki denklemin, Z ile gösterilen atom numarasında olduğu gibi artık geçerli olmamasına neden olur. Bunu anlamak için basit bir yol(tamamlanmamış olmasına rağmen) dıştaki elektronların indirgenen elektronun etkili bir çekirdeğini gördüğü kalkan etkisidir çünkü içteki elektronlar çekirdeğe sıkıca bağlıdır ve taraflı olarak yükünü sıfırlar. Bu yaklaşık olarak Z nin, yüksekçe temel kuantum numarasına bağlı olan Zeff ile sembol edilenetkili çekirdek yükü ile değişmesine neden olur.[]

Bu tür durumlarda yörüngesel türler (azimuthal kuantum Şablon:Ell ile belirlenen) molekülde seviyelerinin etkisinin yanı sıra Zeff ve bu yüzden ayrıca farklı atomsal elektron enerji seviyelerini etkiler. Elektron guruplaşması için elektronları ile dolu bir atomun Aufbau ilkesi, bu farklı enerji seviyelerini de hesaba katar. Temel seviyede elektronları ile dolu bir atom için en düşük enerji seviyelerinin ilki doludur ve Pauli çıkarma ilkesi, Aufbau ilkesi ve Hund kuralı ile tutarlıdır.[]

İnce yapı parçalanması

İnce yapı, Darwin ifadesi, (atomun içindeki elektronların temas etkileşimleri) ve göreli kinetik enerji düzeltmelerinden (elektronun spini ve hareketi ile çekirdeğinin elektrik alanı arasındaki elektrodinamik etkileşim) kaynaklanır.

Hyperfine (aşırı ince) yapı

Temel metin: Aşırı ince yapı

Bu daha ince yapı, 10−4 eV büyüklüğünde tipik bir sıra ile enerji seviyelerinde tipik bir değişime neden olan elektron çekirdek spin-spin etkileşiminden dolaydır.

Dış alanlardan dolayı enerji seviyeleri

Zeeman etkisi

Temel metin: Zeeman etkisi

Elektronik yörüngesel açısal momentumdan kaynaklanan L manyetik dipole (ikiz kutuplu) moment μL

ile ilişkisi etkileşim enerjisi vardır, aşağıdaki formül ile

ile

.

İlaveten, elektron spininden kaynaklanan manyetik momentumu işin içine katarak.

Göreli etkiler yüzünden (Dirac denklemi), elektron spininin etkisi ile manyetik bir momentum vardır, μS .

,
gS ile elektron spini g-faktörü (fizik) (yaklaşık 2), toplam manyetik momentumuna neden olan, μ,
.

Bu yüzden enerji etkileşimi aşağıdaki formüle dönüşür;

.

Katı etkisi

Temel metin: Katı etki

Moleküller

Molekülde atomlar arası kimyasal bağlanma söz konusu atomlar için durumu daha istikrarlı duruma soktuğu için oluşur, bu genellikle şu demektir: moleküllerdeki söz konusu atomların toplam enerji seviyesi atomların bağlanmamış durumundan daha düşüktür. ayrı atomlar kovalent yapışma için birbirlerine yaklaştıkça, eksenleri yapışma ve anti-yapışma moleküler eksenleri oluşturmak için birbirlerinin enerji seviyelerini etkilerler. Bağlanma ekseninin enerji seviyesi daha düşük, anti-yapışma ekseninin enerji seviyesi daha yüksektir. Yapışmanın stabil olması için kovalent yapışmalı elektronlar aşağı enerji yapışma eksenimsisi işgal eder ki bu da duruma göre σ ya da πsembolleriyle gösterilir. Eş karşı bağ yörüngeleri yıldız işareti eklenerek elde edilen σ* veya π* yörüngeleri ile gösterilebilir. Moleküldeki bağ yapmayan yörünge, bağ yapımına katılmayan ve enerji seviyesi bileşen atom ile aynı olan dışarıdaki elektron kabuklu bir yörüngedir. Bu tür yörüngeler n yörüngeleri olarak gösterilebilir. N yörüngesindeki elektronlar tipik olarak yalnız çiftlerdir . Çok atomlu moleküllerde ayrıca farklı titreşimsel ve dönel enerji seviyeleri vardır. Kabaca molekülsel bir enerji durumu, i.e Hamiltonian molekülsel bir özgün durum, titreşimsel, elektronik, dönel, çekirdeksel ve ötelenme bileşenlerinin toplamı,

Eelectronic, elektronik molekülsel Hamiltonian bir öz durumdur. (potansiyel enerji yüzeyinin değeri) Molekülsel enerji molekülsel ifade sembolleri ile sınıflandırılır. Bu bileşenlerin özel enerjileri özel enerji durumu ve madde ile değişiklik gösterebilir. Kuantum kimyası ve Moleküler fizikte bir enerji seviyesi, bağlı bir kuantum mekanik durumunun nicelleştirilmiş bir enerjisidir.[]

Enerji seviyesi diyagramları

Bir moleküldeki atomlar arasında bağların enerji seviyesi diyagramlarının çeşitli türleri vardır.

Örnekler
Molekülsel yörünge diyagramları , Jablonski diyagramları ve Franck–Condon ilkesi diyagramları.

Enerji seviyesi dönüşümleri

Fazla bilgi: atomsal elektron değişimi, Jablonski diyagramları ve Franck-Condon diyagramları.

E1 den E2 ye olan enerji seviyesindeki artış, enerjisi h ν olan ve kırmızı kıvrımlı ok ile gösterilen bir fotonun yayılımına neden olur.
E2 den E1 ye olan enerji seviyesindeki azalış, enerjisi h ν olan ve kırmızı kıvrımlı ok ile gösterilen bir fotonun yayılımına neden olur.

Atomlar ve moleküllerdeki elektronlar, enerjisi tamı tamına iki seviyeleri arasındaki enerji farkına eşit olması gereken bir fotonu emerek ya da dışarı vererek enerji seviyelerini değiştirebilirler. Elektronlar, ayrıca iyon, molekül ya da atom gibi özel bir kimyasal türlerinden çıkarılabilirler. Bir elektronun bir atomdan tamamen kurtuluşu iyonlaşmanın bir formudur. (pratikte geriye kalan atom(iyon) üzerinde bir etkiye sahip olmaması için bir etkide, sonsuz bir temel kuantum sayısına sahip yörüngenin dışına doğru ekili biçimde elektron göndererek)

Atomların çeşitli türleri için 1., 2.,3. gibi iyonlaşma enerjileri vardır; orijinal olarak temel enerji seviyesindeki atomdan başlayarak en yüksek enerjili elektronların 1. sonra 2. sonra 3. vb çıkarımı. Eş karşıt niceliklerdeki enerji, ayrıca ortaya çıkabilir; bazen elektronlar pozitif yüklü iyonlara ya da atomlara eklendiğinde foton enerjisi halinde salıverilir. Moleküller ayrıca titreşimsel ya da dönel enerji seviyeleri değişimine uğrayabilirler. Enerji seviyesi dönüşümleri ayrıca ışınımsal olamayabilir, bir fotonun emilimi ya da soğurulması gerçekleşmeyebilir.

Eğer bir atom, molekül ya da iyon mümkün olabilecek en düşük enerji seviyesinde ise kendinin ve elektronların temel seviyede olduğu söylenilir. Eğer daha yüksel bir enerji seviyesinde ise uyarılmış denilir ya da temel seviyeden yüksek enerjiye sahip olan elektronlar uyarılmıştır. Bu tür bir grup, enerjisi seviyeleri arasındaki enerji farkına eşit olan herhangi bir fotonu emerek daha yüksek enerji seviyesine uyarılabilir. Tersine uyarışmış bir grup, enerji farkına eşit bir foton salarak daha düşük enerji seviyesine inebilir. Bir fotonun enerjisi Planck sabiti (h) çarpı frekans a eşittir ve bu yüzden (ν) frekansi ile orantılıdır ya da dalga boyu ile(λ) ters orantılıdır.[]

ΔE = h ν = h c / λ,
c, ışık hızı olduğu için, ν λ a eşittir.

Buna bağlı olarak spektroskopinin (tayf ölçümü) birçok türleri analize edilen materyaldeki bilgi sağlayan emilen ya da salınan fotonların dalga boyu ya da frekansını belirlemeye dayanır. (spektrum ile analize edilerek elde edilen materyallerin elektronik yapısı ve enerji seviyesi üzerine bilgi içeren)

Yıldız işareti genelde uyarılmış durumu göstermek için kullanılır. Bir molekülde enerji dönüşümü yani temel seviyeden uyarışmış seviye geçişi şu şekilde gösterilebilir: σ → σ*, π → π* ya da n → π* elektronun uyarılmasının bir σ bağından σ karşıbağına, bir π bağından bir π karşıbağ yörüngesine ya da bir n karşıbağından bir π karşıbağ yörüngesine. Her tür uyarılmış moleküller için ayrıca temel seviyelerine geçmeleri mümkündür; σ* → σ, π* → π veya π* → n ile gösterilebilir.[]

Yüksel sıcaklık sıvı atom ve moleküllerin öteleme enerjilerini arttırarak daha hızlı hareket etmelerine neden olur ve termal olarak uyarılmış moleküllere daha yüksek ortalama titreşimsel ve dönel genişlik değerleri kazanmasına neden olur. (molekülü daha yüksek iç enerji seviyelerine uyarır)Bunun anlamı sıcaklık arttıkça molekülsel ısı kapasitesine titreşimsel, dönel ve öteleme katkıları, moleküllerin daha fazla ısı emmesini ve içsel enerjilerini daha fazla tutmalarını sağlar. Isı iletimi tipik olarak, moleküller ya da atomlar birbirleri arasında ısı iletmek için çarpışımı ile oluşur. Daha yüksek sıcaklıklarda elektronlar termal olarak atom veya moleküllerde daha yüksek enerji seviyelerine uyarılabilir. Bir elektronun sonraki enerji seviyesine düşüşü belki renkli bir parıltıya neden olan foton çıkarımı yapabilir.[]

Çekirdekten uzak bir elektron çekirdeğe yakın olan bir elektrondan daha fazla potansiyel enerjiye sahiptir fakat çekirdeğe daha az bağlıdır çünkü potansiyel enerjisi negatiftir ve çekirdekten uzaklığına ters orantılı bir şekilde bağlıdır.[]

Kristal materyaller

Enerji seviyelerine ek olarak kristal katılar enerji bantlarına sahiptir. Elektronlar dolu olmayan bir banttaki herhangi bir enerjiye tutunabilir. İlk başta enerji seviyeleri gerekliliği için bir istisna olarak görülebilir. Fakat kuşak kuramında gösterildiği üzere enerji kuşakları aslında çözülmek için birbirlerine çok yakın farklı enerji seviyelerinden oluşur. Bir banda seviyelerin numarası, kristaldeki atomların numarasının sınıfıdır. Bu yüzden elektronlar aslında bu enerjilere kısıtlı olsa da süreç değerlerine tutunabildikleri görünür. Kristaldeki önemli enerji seviyeleri, değerlik bandının tepe noktası, Fermi seviyesi, eksik durumların enerji seviyeleri ve boşluk seviyesi ve iletim bandının dibidir.[]

Ayrıca bakınız

Kaynakça

  1. ^ a b "Atomic Orbital Theory" (PDF). 8 Ekim 2018 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 3 Şubat 2012. 

İlgili Araştırma Makaleleri

Dalga-parçacık ikililiği teorisi tüm maddelerin yalnızca kütlesi olan bir parçacık değil aynı zamanda da enerji transferi yapan bir dalga olduğunu gösterir. Kuantum mekaniğinin temel konsepti, kuantum düzeyindeki objelerin davranışlarında ‘’parçaçık’’ ve ‘’dalga’’ gibi klasik konseptlerin yetersiz kalmasından dolayı bu teoriyi işaret eder. Standart kuantum yorumları bu paradoksu evrenin temel özelliği olarak açıklarken, alternatif yorumlar bu ikililiği gelişmekte olan, gözlemci üzerinde bulunan çeşitli sınırlamalardan dolayı kaynaklanan ikinci dereceden bir sonuç olarak açıklar. Bu yargı sıkça kullanılan, dalga-parçacık ikililiğinin tamamlayıcılık görüşüne hizmet ettiğini, birinin bu fenomeni bir veya başka bir yoldan görebileceğini ama ikisinin de aynı anda olamayacağını söyleyen Kopenhag yorumu ile açıklamayı hedefler.

<span class="mw-page-title-main">Atom</span> tüm maddelerin kimyasal ve fiziksel özelliklerini taşıyan en küçük yapıtaşı

Atom veya ögecik, bilinen evrendeki tüm maddenin kimyasal ve fiziksel niteliklerini taşıyan en küçük yapı taşıdır. Atom Yunancada "bölünemez" anlamına gelen "atomos"tan türemiştir. Atomus sözcüğünü ortaya atan ilk kişi MÖ 440'lı yıllarda yaşamış Demokritos'tur. Gözle görülmesi imkânsız, çok küçük bir parçacıktır ve sadece taramalı tünelleme mikroskobu vb. ile incelenebilir. Bir atomda, çekirdeği saran negatif yüklü bir elektron bulutu vardır. Çekirdek ise pozitif yüklü protonlar ve yüksüz nötronlardan oluşur. Atomdaki proton sayısı elektron sayısına eşit olduğunda atom elektriksel olarak yüksüzdür. Elektron ve proton sayıları eşit değilse bu parçacık iyon olarak adlandırılır. İyonlar oldukça kararsız yapılardır ve yüksek enerjilerinden kurtulmak için ortamdaki başka iyon ve atomlarla etkileşime girerler.

<span class="mw-page-title-main">Elektron dizilimi</span>

Elektron dizilimi, atom fiziği ve kuantum kimyasında, bir atom ya da molekülün elektronlarının atomik ya da moleküler orbitallerdeki dağılımıdır. Örneğin Neon atomunun elektron dizilimi 1s2 2s2 2p6 olarak gösterilir.

Planck sabiti (h), bir fizik sabitidir ve kuantum mekaniğindeki aksiyonum kuantumu için kullanılır. Değeri h= 6.62607015×10−34 J⋅s' dir. Planck sabiti daha önceleri bir Fotonun enerjisi (E) ile elektromanyetik dalgasının frekansı (ν) arasında bir orantı idi. Enerji ile frekans arasındaki bu ilişki Planck ilişkisi veya Planck formülü olarak adlandırılır:

<span class="mw-page-title-main">Bohr modeli</span> bir atom modeli

Bohr atom modeli, Niels Henrik Bohr tarafından 1913 yılında, Rutherford atom modelinden yararlanılarak öne sürülmüştür.

<span class="mw-page-title-main">Kovalent bağ</span> İki atom arasında elektronun paylaşılması

Kovalent bağ, atomlar arasında elektron çiftleri oluşturmak için elektronların paylaşımını içeren kimyasal bağdır. Bu elektron çiftlerine paylaşılan çiftler veya bağ çiftleri denir. Atomlar arasında elektronları paylaştıklarında çekici ve itici kuvvetlerin kararlı dengesine kovalent bağ denir. Birçok molekül için elektronların paylaşılması her atomun kararlı elektronik gruplaşmasına denk gelen tam değerlik kabuğunun eşdeğerine ulaşmasına olanak tanır.

<span class="mw-page-title-main">Kimyasal bağ</span> atomları birbirine bağlanmasını ve bir arada kalmasını sağlayan kuvvet

Kimyasal bağ, atomların veya iyonların molekülleri, kristalleri ve diğer yapıları oluşturmak üzere birleşmesidir. Bağ, iyonik bağlar'da olduğu gibi zıt yüklü iyonlar arasındaki elektrostatik kuvvetten veya kovalent bağ'larda olduğu gibi elektronların paylaşılmasından veya bu etkilerin bazı kombinasyonlarından kaynaklanabilir. Açıklanan kimyasal bağların farklı mukavemetleri vardır: kovalent, iyonik ve metalik bağlar gibi "güçlü bağlar" veya "birincil bağlar" ve dipol-dipol etkileşimleri, London dağılım kuvveti ve hidrojen bağı gibi "zayıf bağlar" veya "ikincil bağlar" vardır.

<span class="mw-page-title-main">Atom çekirdeği</span> Atomun çekim kuvvetinin etkisiyle, çevresinde elektronlar dolaşan, proton ve nötronlardan oluşan pozitif elektron yüklü merkez bölümü

Atom çekirdeği, atomun merkezinde yer alan, proton ve nötronlardan oluşan küçük ve yoğun bir bölgedir. Atom çekirdeği 1911 yılında Ernest Rutherford tarafından keşfedildi. Bu keşif, 1909 yılında gerçekleştirilen Geiger-Marsden deneyine dayanmaktadır. Nötronun James Chadwick aracılığıyla 1932 yılında keşfinden sonra, çekirdeğin proton ve nötronlardan oluştuğu modeli Dmitri Ivanenko ve Werner Heisenberg tarafından çabucak geliştirildi. Atomun kütlesinin neredeyse tamamı çekirdek içerisindedir, elektron bulutunun atom kütlesine katkısı oldukça azdır. Proton ve nötronlar çekirdek kuvveti tarafından çekirdeği oluşturmak için birbirlerine bağlanmıştır. 

<span class="mw-page-title-main">Atom yarıçapı</span> Atomun çekirdeği ile elektron bulut arasındaki uzaklık

Atom yarıçapı, küre şeklinde olduğu düşünülen atomların büyüklüklerini ölçmekte kullanılan bir niceliktir. Bu nicelik bir atomun çekirdeği ile elektron bulutu arasındaki uzaklığı ifade eder.

Kuantum mekaniğine göre atomik orbital, elektronların atom çekirdeği etrafındaki konumunu ve dalga-benzeri özelliklerini tanımlayan bir matematiksel fonksiyondur. Elektronun atom çekirdeği etrafındaki belirli bir bölgede bulunma olasılığı bu fonksiyon aracılığı ile hesaplanabilir. Fizikte atomik, kimyada orbital olarak geçer.

Franck–Hertz deneyi tarihsel önemi olan bir fizik deneyidir. Kuantum mekaniğine öncülük eden Bohr-atom-modeli, bu deney tarafından doğrulanmıştır. Alman fizikçiler James Franck ve Gustav Ludwig Hertz, 1914 yılında atomların enerji seviyelerini deneysel olarak ölçtüler. Böylece, Niels Bohr tarafından geliştirilen, elektronların atom çekirdekleri etrafında kesintili enerji yörüngelerinde yer aldığı atom modeli Franck–Hertz deneyi tarafından deneysel olarak kanıtlanmış oldu. Franck ve Hertz bu başarılarında dolayı 1925 yılında Nobel fizik ödülünü kazandılar.

Dejenere elektron basıncı, kuantum elektron basıncı olgusundan daha genel olan bir basınçtır. Pauli dışlama ilkesi, bir atomda iki fermiyonun aynı anda tamamen aynı kuantum sayılarına sahip olmasına izin vermemektedir. Sonuçta aniden ortaya çıkan basınç, maddenin daha küçük hacimlerde sıkıştırılmasına karşı koyar. Dejenere elektron basıncı, saf bir maddenin elektron yörünge yapısı olarak tanımlanan, aynı temel mekanizmadan kaynaklanmaktadır. Freeman Dyson, katı maddelerin geçirmezliğinin önceden kabul edilmiş olan elektrostatik iteleme yerine, dejenere kuantum basıncından kaynaklandığını göstermiştir. Ayrıca, dejenere elektron basıncı yıldızların nükleer füzyonu dindiğinde kendi ağırlığı altında çökmesini engellemektedir. Yeterli büyüklükteki yıldızların çöküşünü engellemek için dejenere elektron basıncı yetersiz kalmaktadır ve nötron yıldızı oluşmaktadır. Bu durumda ise, dejenere nötron basıncı yıldızların daha fazla çökmesini engeller.

Kuantum mekaniğinde fermi enerjisi, genelde mutlak sıfır sıcaklığında etkileşimde olmayan fermiyonlardan oluşan bir kuantum sistemi içerisinde, en yüksek ve en düşük seviyede dolu vaziyetteki tek parçacık durumları arasındaki enerji farkını temsil eden bir konsepttir. Bir metalde en düşük dolu durum genelde iletken bandın altı olarak alınırken, bir fermi gazında bu durumun sıfır kinetik enerjisi olduğu kabul edilir.

Kuantum mekaniği madde ve atomların ve atom içindeki parçacıklar ölçeğinde enerji ile etkileşimlerinin davranışını açıklayan bilimsel ilkeler organıdır: Bu makaleye teknik olmayan konuların tanıtımında ulaşabilirsiniz.

<span class="mw-page-title-main">Rydberg atomu</span>

Rydberg atomu çok yüksek temel nicem sayılı bir veya iki elektrona sahip bir uyarılmış atomdur Bu atomlar elektrik ve manyetik alana abartılı tepkiler vermeyi de içinde barındıran, uzun bozunma devri ve yaklaşık elektron dalgafonksiyonları, bazı şartlar altında çekirdekler etrafındaki elektronların klasik yörüngeleri gibi kendilerine has birçok özelliğe sahiptir. Çekirdek elektronları dış elektronları çekirdeğin elektrik alanından kalkanlar, öyle ki belirli bir mesafeden hidrojen atomundaki bir elektronun tecrübe ettiği gibi elektrik potansiyeli belirleyicidir.

Atom fiziğinde, iki-elektron atomu veya Helyumumsu atom olarak adlandırılan, sadece iki elektron ve Z kadar yüklü bir çekirdek ihtiva eden kuantum mekaniksel bir sistemdir. Bu husus, Pauli dışlama ilkesinin ana rolü üstlendiği ilk çok elektronlu sistemler meselesidir.

Kuantum mekaniğinde, spin-yörünge etkileşimi(spin-yörünge etkisi, spin-yörünge bağlaşımı) parçacığın dönüşünün hareketiyle etkileşimidir. En çok bilinen örnek ise, elektronların dönüşü ile elektronların çekirdek etrafındaki dönüşünden dolayı oluşan manyetik alandan dolayı oluşan elektromanyetik etkileşim ve buna bağlı olan elektronların atomik enerji seviyesindeki değişim. Bu tayf çizgilerinden saptanabilir. Buna benzer bir diğer etki proton ve nötronların çekirdekte dönmesinden dolayı oluşan olan Açısal momentum ve güçlü nükleer kuvvet, nükleer kabuk modelindeki değişime neden olur. Spintronik alanında, yarı iletkenlerde ve diğer materyallerde spin yörünge etkileşimi yeni teknolojik gelişimler için araştırılmaktadır.

Kimyasal elementlerin ya da kimyasal bileşiklerin emisyon spektrumu atom ya da moleküllerin yüksek enerji seviyesinden düşük enerji seviyesine geçişinden elde edilen elektromanyetik radyasyonun frekans spektrumudur. Yayılmış fotonun enerjisi iki enerji düzeyi arasındaki farka eşittir. Her atom için birçok mümkün geçişler vardır ve enerji düzeyleri arasındaki her geçiş spesifik enerji farkına sahiptir. Bu farklı geçişlerin toplamı, farklı ışınlar halinde gönderilmiş dalga boylarına ve emisyon spektrumunun düzenlenmesine neden olur. Her elementin emisyon spektrumu özeldir. Dahası, spektroskopi elementlerin madde içindeki bilinmeyen kompozisyonunu tespit etmek için kullanılabilir. Buna benzer olarak, moleküllerin emisyon spektrumları maddelerin kimyasal analizlerinde kullanılabilir.

<span class="mw-page-title-main">Elektronik bant yapısı</span>

Katı hal fiziğinde, bir katının elektron kuşak yapısı ; katıdaki bir elektronun sahip olabileceği enerji aralıkları ya da sahip olamayacağı enerji aralıkları olarak tanımlanır. Enerji bant teorisi bu bant ve bant boşluklarını atom veya moleküllerin büyük periyodik kafeslerindeki bir elektron için, izinli kuantum mekaniksel dalga fonksiyonlarını inceleyerek çıkarır. Bant teorisi katıların birçok fiziksel özelliklerini; örneğin elektriksel direnç ve optik soğurum gibi, açıklamak için başarılı bir biçimde kullanılmaktadır ve katı hal cihazları anlamanın temelini oluşturmaktadır.

Atomik, moleküler ve optik fizik, bir ya da birkaç atomun ölçeğinde, madde-madde ve ışık-madde etkileşimi çalışmadır ve enerji, birkaç elektron voltları etrafında ölçeklenir. Üç alanla yakından ilişkilidir. AMO teorisi, klasik, yarı klasik ve kuantum işlemlerini kapsar. Tipik olarak, teori ve emisyon uygulamaları, elektromanyetik yayılım ve emilme, spektroskopi analizi, lazer ve mazerlerin kuşağı ve genel olarak maddenin optik özellikleri, uyarılmış atom ve moleküllerden, bu kategorilere ayrılır.