İçeriğe atla

Nükleer enerji santrali

Kontrol Edilmiş
Rio de Janeiro, Brezilya'daki Angra Nükleer Santrali
"Cattenom" Nükleer Santrali, Fransa

Nükleer santral (NPP)[1] veya atom santrali (APS), ısı kaynağının nükleer reaktör olduğu termik santraldir. Termik santrallerde tipik olduğu gibi, ısı, elektrik üreten jeneratöre bağlı buhar türbinini çalıştıran buhar üretmek için kullanılır. Eylül 2023 itibarıyla Uluslararası Atom Enerjisi Kurumu, dünya çapında 32 ülkede faaliyette olan 410 nükleer santral ve inşa halinde olan 57 nükleer santral olduğunu bildirdi.[2][3][4]

Nükleer santraller, işletme, bakım ve yakıt maliyetleri maliyet spektrumunun alt ucunda olduğundan genellikle temel yük için kullanılır.[5] Ancak, bir nükleer santral inşa etmek genellikle beş ila on yıl sürer ve bu, ilk yatırımların nasıl finanse edildiğine bağlı olarak önemli finansal maliyetlere yol açabilir.[6]

Nükleer santrallerin karbon ayak izi, güneş enerjisi çiftlikleri ve rüzgar çiftlikleri gibi yenilenebilir enerjiyle karşılaştırılabilir[7][8] ve doğal gaz ve kömür gibi fosil yakıtlardan çok daha azdır. Nükleer santraller, güneş ve rüzgar enerjisi santrallerine[9] kıyasla en güvenli elektrik üretim modları arasındadır.[10]

Tarihçe

Einstein, 1905 yılında E=mc2 formülü ile fisyon (atom çekirdeğinin iki veya daha fazla parçaya bölünmesi) sonucu açığa çıkabilecek enerji konusunda öngörüde bulunmuştu. Daha sonra 1930 yılında bu öngörü deneysel olarak Otto Hahn, Lise Meitner ve diğerleri tarafından doğrulandı. Dünyadaki ilk nükleer reaktör 1942 yılında Enrico Fermi’nin yürüttüğü bir proje sonucunda Amerika Birleşik Devletleri'nin Chicago, Illinois kentinde kuruldu.

Fisyon kullanılarak üretilen ilk elektrik Arco, Aralık 1951'de Idaho’daki Deneysel Üretken Reaktörü'nde elde edilmiştir.

Bir nükleer reaktörden gelen ısının elektrik üretmek için kullanılması ilk kez 21 Aralık 1951'de Deneysel Üretici Reaktör I'de gerçekleşti ve dört ampulü çalıştırdı.[11][12]

27 Haziran 1954'te, bir elektrik şebekesi için elektrik üreten dünyanın ilk nükleer santrali olan Obninsk Nükleer Güç Santrali, Sovyetler Birliği'ndeki Obninsk'te faaliyete geçti.[13][14][15]

Dünyanın ilk tam ölçekli enerji santrali olan Calder Hall nükleer enerji santrali, Birleşik Krallık'ta 17 Ekim 1956'da açıldı ve plütonyum üretmesi de amaçlanmıştı..[16] Dünyanın yalnızca elektrik üretimine adanmış ilk tam ölçekli enerji santrali, 18 Aralık 1957'de şebekeye bağlanan ABD'nin Pensilvanya kentindeki Shippingport Atom Enerjisi Santrali'ydi.

Temel bileşenler

Sistemler

Kaynar su reaktörü (BWR)

Elektrik enerjisine dönüşüm, geleneksel termik santrallerde olduğu gibi dolaylı olarak gerçekleşir. Nükleer reaktördeki fisyon, reaktör soğutma sıvısını ısıtır. Soğutma sıvısı, reaktörün türüne bağlı olarak su veya gaz veya hatta sıvı metal olabilir. Reaktör soğutma sıvısı daha sonra bir buhar jeneratörüne gider ve buhar üretmek için suyu ısıtır. Basınçlı buhar daha sonra genellikle çok aşamalı bir buhar türbinine beslenir. Buhar türbini buharı boşaltıp kısmen yoğunlaştırdıktan sonra, kalan buhar bir kondansatörde yoğunlaştırılır. Kondansatör, nehir veya soğutma kulesi gibi ikincil tarafa bağlı bir ısı eşanjörüdür. Daha sonra su buhar jeneratörüne geri pompalanır ve döngü tekrar başlar. Su-buhar çevrimi Rankine çevrimine karşılık gelir.

Nükleer reaktör, istasyonun kalbidir. Reaktörün çekirdeği, merkez kısmında nükleer fisyon nedeniyle ısı üretir. Bu ısıyla, reaktöre pompalanan soğutucu ısıtılır ve böylece reaktörden enerji alınır. Nükleer fisyondan gelen ısı, türbinlerden geçen ve elektrik jeneratörlerine güç veren buharı yükseltmek için kullanılır.

Nükleer reaktörler genellikle zincirleme reaksiyonu beslemek için uranyuma dayanır. Uranyum, Dünya'da bol miktarda bulunan ve deniz suyunda ve çoğu kayada olan çok ağır bir metaldir. Doğal olarak oluşan uranyum iki farklı izotopta bulunur: %99,3'ü oluşturan uranyum-238 (U-238) ve yaklaşık %0,7'si oluşturan uranyum-235 (U-235). U-238'in 146 nötronu ve U-235'in 143 nötronu vardır.

Farklı izotopların farklı davranışları vardır. Örneğin, U-235 bölünebilir, yani kolayca bölünebilir ve çok enerji yayar, bu ise U-235‘i nükleer enerji için ideal yapar. Öte yandan, U-238 aynı element olmasına rağmen bu özelliği yoktur. Ayrıca farklı izotopların farklı yarı ömürleri vardır. U-238, U-235'ten daha uzun yarı ömrü vardır, bu nedenle zamanla bozunması daha uzun sürer. Bu ayrıca U-238'in U-235'ten daha az radyoaktif olduğu anlamına gelir.

Nükleer fisyon radyoaktivite yarattığından, reaktör çekirdeği koruyucu bir kalkanla çevrilidir. Bu muhafaza radyasyonu emer ve radyoaktif malzemenin çevreye salınmasını önler. Ayrıca birçok reaktör, reaktörü hem iç kazalara hem de dış etkilere karşı korumak için bir beton kubbe ile donatılmıştır.[17]

Buhar türbininin amacı buhardaki ısıyı mekanik enerjiye dönüştürmektir. Buhar türbininin bulunduğu motor bölmesi genellikle yapısal olarak ana reaktör binasından ayrılır. Çalışır durumdaki bir türbinin tahribatından kaynaklanan döküntülerin reaktöre doğru uçmasını önleyecek şekilde hizalanır.

Basınçlı su reaktörü (PWR)

Basınçlı su reaktöründe buhar türbini nükleer sistemden ayrılır. Buhar jeneratöründeki bir sızıntıyı ve dolayısıyla radyoaktif suyun geçişini erken bir aşamada tespit etmek için, buhar jeneratörünün çıkış buharını izlemek üzere bir aktivite ölçer takılır. Buna karşılık, kaynar su reaktörleri radyoaktif suyu buhar türbininden geçirir, böylece türbin nükleer santralin radyolojik olarak kontrol edilen alanının bir parçası olarak tutulur.

Elektrik jeneratörü, türbin tarafından sağlanan mekanik gücü elektrik gücüne dönüştürür. Yüksek nominal güce sahip düşük kutuplu AC senkron jeneratörler kullanılır. Bir soğutma sistemi, reaktör çekirdeğinden ısıyı alır ve onu istasyonun başka bir alanına taşır; burada termal enerji, elektrik üretmek veya diğer yararlı işler yapmak için kullanılabilir. Genellikle sıcak soğutucu, bir kazan için ısı kaynağı olarak kullanılır ve buradan gelen basınçlı buhar, bir veya daha fazla buhar türbini ile çalışan elektrik jeneratörünü çalıştırır.[18]

Acil bir durumda, boruların patlamasını veya reaktörün patlamasını önlemek için emniyet valfleri kullanılabilir. Valfler, basınçta çok az artışla sağlanan tüm akış hızlarını elde edebilecek şekilde tasarlanmıştır. Kaynar su reaktörü durumunda, buhar bastırma odasına yönlendirilir ve orada yoğunlaşır. Isı eşanjöründeki odalar ara soğutma devresine bağlanır.

Ana kondenser, türbin-jeneratör egzozundan gelen ıslak buharı, sıvı su ve doygunluk koşullarında buhar karışımını alıp onu tekrar alt soğutulmuş sıvı suya yoğunlaştıran ve böylece kondensat ve besleme suyu pompaları tarafından reaktöre geri pompalanabilen büyük çapraz akışlı kabuk ve borulu ısı eşanjörüdür.

Güvenlik Sistemleri

Reaktör koruma sistemi

Nükleer reaksiyonu anında sonlandırmak için tasarlanmıştır. Zincirleme tepkimeyi kırarak ısı kaynağını ortadan kaldırır.

Engelleme sistemleri

Engelleme sistemleri çevreye radyoaktif madde salınımını önlemek için tasarlanmıştır. Bazı engelleme sistemleri şunlardır:

Yakıt kaplama

Nükleer yakıt etrafında koruma tabakası olan ve reaktör soğutma devresi boyunca yakıtı korozyondan korumak için tasarlanmıştır.

Reaktör kabı

Nükleer yakıt etrafında koruyucu ilk katmandır ve genellikle bir nükleer reaksiyon sırasında salınan radyasyonun çoğunu yakalamak için yüksek basınçlara dayanacak şekilde tasarlanmıştır.

Birincil çevreleme

Birincil çevreleme sistemi genellikle reaktör kabını içeren büyük bir metal ve beton yapıdan oluşur. Birincil çevreleme sistemi sızıntı ve güçlü iç basınçlara dayanacak şekilde tasarlanmıştır.

İkincil çevreleme

Bazı santrallerde, birincil sistemi kapsayan ikincil çevreleme sistemi vardır. Türbin dahil buhar sistemlerinin çoğu, radyoaktif malzemeleri içerdiğinden bu sistem çok yaygındır.

Çekirdek alıcı

Tam erime durumunda, yakıt büyük olasılıkla binanın beton zemini üzerine sona erer. Birincil çevrelemede zemin genellikle nükleer erimeye karşı yeterli koruma sağlayan betondan oluşur. Bu büyük bir sıcaklığa dayanabilir. Buna rağmen çekirdeğin betonu eriteceği endişesi sebebiyle, "çekirdek tutucu" icat edilmiştir. Bugün, tüm yeni Rus tasarımı reaktörler çevreleme binanın alt çekirdek alıcıları ile donatılmıştır.[19]

Nükleer Enerji Nedir?

Enerji Yoğunluk Oranları

  • Hidrolik enerji yoğunluğu (~0.001 kJ/gr)
  • Kimyasal enerji yoğunluğu (~40 kJ/gr)

Atom Enerjisi

• Atomun yapısının araştırılması ile başlayan süreç insanoğlunu hidrolik ve kimyasal enerjiden kat kat daha yoğun olan nükleer enerjiyi kullanma imkanına kavuşturmuş ve insanoğlunun uzaya açılmasının önündeki en büyük engellerden birini ortadan kaldırmıştır.

• Nükleer enerjinin kullanılması bugün için alternatifsiz olarak gözükmektedir. Özellikle uzay çalışmalarında nükleer enerjinin önemi kıyaslanamayacak derecede büyüktür.

• Kütle enerjisi (~90 trilyon kJ/gr)

Nükleer Enerji Nasıl Oluşur?

1- Fisyon yani ağır atom çekirdeklerinin parçalanmasıyla açığa çıkan çok güçlü enerjiler ile nükleer enerji elde edilir. Bunları günlük yaşamımızda kullandığımız elektrik enerjisine çevirmenin yolu nükleer enerji santralleridir.

235U + 1n236U*140Cs + 93Rb + 31n

2- Füzyon reaksiyonunda küçük kütleli çekirdekler birleşip büyük bir çekirdek oluştururlar. Güneş ve yıldızların enerji üretimleri füzyon reaksiyonlarına dayanır. Diğer bir deyişle evrenin oluşumundaki enerji kaynağı füzyon reaksiyonlarına dayanır. Füzyon çevre dostu, temiz bir enerjidir. Füzyon yakıtı hidrojenin izotopları döteryum (D) deniz suyundan, trityum (T) ise yapay olarak elde ediliyor.

D + D → He + n + enerji

T + D → He + n + enerji

  • Bu reaksiyonların gerçekleşebilmesi için T = 100 milyon °C sıcaklığa kadar erişilmesi gerekir. Güneşin yüzey sıcaklığı 6000 °C dir.
  • Bir ton deniz suyu yaklaşık olarak 33 g döteryum içerir.
  • 1 g döteryum-trityum füzyon reaksiyonundan elde edilecek enerji yaklaşık 160 Milyon kJ dur.

E=mc²

Nükleer tepkimeler; parçalanma ürünlerinin toplam kütlesi, ilk çekirdeğin kütlesinden daha küçük olduğunda açığa enerji çıkarırlar. E=mc² formülü uyarınca “kayıp kütle“, ürünlerin kinetik enerjisi biçiminde ortaya çıkar.

  • 1 kg U-235 izotopunun fisyon tepkimesi sonucu açığa çıkan enerjinin yaklaşık 1.3 milyon kg kömürünkine eşdeğerdir. Yaklaşık 22 milyar kJ enerji ortaya çıkar.

Zincirleme Reaksiyon

Zincirleme reaksiyon, fisyon sonucunda ortaya çıkan nötronların, ortamda bulunan diğer fisyon yapabilen atomların çekirdekleri tarafından yutularak, onları da aynı reaksiyona sokması ve bunun ardışık olarak tekrarlanmasıdır. Kontrolsüz bir zincirleme reaksiyon, çok kısa bir süre içinde çok büyük bir enerjinin ortaya çıkmasına neden olur. Atom bombasının patlaması bu şekildedir.

  • Nükleer santrallerde zincirleme nükleer reaksiyonlar sürekli – kontrollü ve güvenli bir şekilde oluşur.

Radyasyon

İnsanlar doğal çevreden ve yapay kaynaklardan sürekli radyasyon alarak yaşarlar.

  • Doğal radyasyon = %88
  • Yapay radyasyon = %12
  • Nükleer santralin etki alanında yaşayan bir kişinin alacağı ek radyasyon, tek bir göğüs röntgeni çektirmekle alınacak radyasyonun ellide biri kadardır.


Kaynakça

  1. ^ Release, Press. "New modification of Russian VVER-440 fuel loaded at Paks NPP in Hungary". 
  2. ^ "PRIS – Home". Iaea.org. Erişim tarihi: 17 Ağustos 2023. 
  3. ^ "World Nuclear Power Reactors 2007–08 and Uranium Requirements". Dünya Nükleer Birliği. June 9, 2008. March 3, 2008 tarihinde kaynağından arşivlendi. Erişim tarihi: June 21, 2008. 
  4. ^ "Nuclear power plants - types of reactors - U.S. Energy Information Administration (EIA)". www.eia.gov. Erişim tarihi: 29 Mayıs 2024. 
  5. ^ "Table A.III.1 − Cost and performance parameters of selected electricity supply technologies" (PDF). The Intergovernmental Panel on Climate Change. Erişim tarihi: 20 Aralık 2021. 
  6. ^ Reduction of Capital Costs of Nuclear Power Plants. OECD / NEA. 8 Şubat 2000. doi:10.1787/9789264180574-en. ISBN 9789264171442. Erişim tarihi: 20 Aralık 2021. 
  7. ^ Rueter, Gero (27 Aralık 2021). "How sustainable is wind power?". Deutsche Welle. Erişim tarihi: 28 Aralık 2021. Bugün yeni inşa edilen bir kara rüzgar türbini, ürettiği her kilovatsaat (kWh) için yaklaşık dokuz gram CO2 üretir... Denizdeki yeni bir açık deniz santrali kWh başına yedi gram CO2 yayar... Güneş enerjisi santralleri, üretilen her kWh için 33 gram CO2 yayar... Doğal gaz kWh başına 442 gram CO2, taş kömüründen elde edilen elektrik 864 gram ve linyit veya kahverengi kömürden elde edilen elektrik 1034 gram üretir... Nükleer enerji, uranyum madenciliğinin ve nükleer reaktörlerin inşası ve işletilmesinin neden olduğu emisyonlar göz önüne alındığında, kWh başına yaklaşık 117 gram CO2'ye denk gelir. 
  8. ^ "Table A.III.2 − Emissions of selected electricity supply technologies (gCO2eq / kWh)" (PDF). The Intergovernmental Panel on Climate Change. Erişim tarihi: 20 Aralık 2021. 
  9. ^ Markandya, Anil; Wilkinson, Paul (13 Eylül 2007). "Electricity generation and health". The Lancet. 370 (9591). ss. 979–990. doi:10.1016/S0140-6736(07)61253-7. PMID 17876910. Erişim tarihi: 20 Aralık 2021. 
  10. ^ "Death rates from energy production per TWh". Our World in Data. Erişim tarihi: 22 Şubat 2022. 
  11. ^ "EBR-I (Experimental Breeder Reactor-I)". Argonne National Laboratory. 
  12. ^ Rick Michal (Kasım 2001). "Fifty years ago in December: Atomic reactor EBR-I produced first electricity" (PDF). Nuclear News. American Nuclear Society. 25 Haziran 2008 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 20 Aralık 2021. 
  13. ^ "Russia's Nuclear Fuel Cycle". world-nuclear.org. 13 Şubat 2013 tarihinde kaynağından arşivlendi. Erişim tarihi: 1 Kasım 2015. 
  14. ^ "OBNINSK 1954 – první jaderná elektrárna na světě, ČESKÁ ENERGETIKA s.r.o. - Vaše síla v energetice". www.ceskaenergetika.cz. 5 Ağustos 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 5 Ağustos 2021. 
  15. ^ Kaiser, Peter; Madsen, Michael (2013). "Atom Mirny: The World's First Civilian Nuclear Power Plant". IAEA Bulletin (Online) (Rusça). 54 (4). ss. 5–7. ISSN 1564-2690. 
  16. ^ "Queen switches on nuclear power". BBC Online. 17 Ekim 2008. Erişim tarihi: 1 Nisan 2012. 
  17. ^ William, Kaspar et al. (2013). A Review of the Effects of Radiation on Microstructure and Properties of Concretes Used in Nuclear Power Plants. Washington, D.C.: Nuclear Regulatory Commission, Office of Nuclear Regulatory Research.
  18. ^ {Web kaynağı|başlık=How nuclear power works |website=HowStuffWorks.com |tarih=9 Ekim 2000 |url=http://science.howstuffworks.com/nuclear-power3.htm |erişimtarihi=25 Eylül 2008}}
  19. ^ "Nuclear Industry in Russia Sells Safety, Taught by Chernobyl". 5 Mayıs 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 6 Aralık 2014. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Nükleer enerji</span> atomun çekirdeğinden elde edilen enerji türü

Nükleer enerji, atomun çekirdeğinden elde edilen bir enerji türüdür. Kütlenin enerjiye dönüşümünü ifade eden, Albert Einstein'a ait olan E=mc² formülü ile ilişkilidir.

Türkiye'de her yıl yaklaşık 300 TWsa elektrik üretilmektedir. Burada en önemli santraller listelenmiştir.

<span class="mw-page-title-main">Türbin</span>

Türbin, bir akışkanın enerjisini işe çevirmek için kullanılan alettir. Türbin bir mil ve üzerinde kanatçıklardan oluşur. Kullanılan akışkana göre türbinin yapısı değişir. Çalışma prensibi şu şekildedir. Akışkan türbinin kanatçıklarına çarparak türbin miline hareket verir, hareket milin çıkışında mekanik işe dönüşür.

<span class="mw-page-title-main">Hidroelektrik santrali</span>

Hidroelektrik santrali, barajda biriken su yer çekimi potansiyel enerjisi içermektedir. Su, belli bir yükseklikten düşerken, enerjinin dönüşümü prensibine göre Yerçekimi Potansiyel Enerjisi önce kinetik enerjiye daha sonra da türbin çarkına bağlı jeneratör motorunun dönmesi vasıtasıyla potansiyel elektrik enerjisine dönüşür. Buna da yenilenebilir enerji sınıfına giren hidroelektrik enerji santrali denir. Fizikten bilindiği gibi 1 kg'lık bir kütle, 1 m yükseklikten düştüğünde:

<span class="mw-page-title-main">Buhar türbini</span>

Buhar türbini, basınçlı buhardan termal enerjiyi çıkaran ve bunu dönen bir çıkış milinde mekanik iş yapmak için kullanan makinedir. Modern tezahürü 1884'te Charles Parsons tarafından icat edilmiştir. Modern bir buhar türbininin imalatı, 20. yüzyılda ilk kez kullanılabilir hale gelen teknolojiler kullanılarak yüksek kaliteli çelik alaşımlarını hassas parçalara dönüştürmek için gelişmiş metal işçiliğini içerir. Buhar türbinlerinin dayanıklılığı ve verimliliğindeki sürekli gelişmeler, 21. yüzyılın enerji ekonomisinin merkezinde yer almaya devam etmektedir.

<span class="mw-page-title-main">Termik santral</span> ısı enerjisinin elektrik enerjisine dönüştürüldüğü santral türü

Termik santral, ana işletici makinesi buhar gücüyle çalışan güç santralıdır. Isıtılan su buhara dönüştürülerek bir elektrik üretecini süren buhar türbinini döndürmekte kullanılır. Türbinden geçen buhar Rankine çevrimi denilen yöntemle bir yüzey yoğunlaştırıcıda yoğunlaştırılırak geri suya dönüştürülür. Termik santralların tasarımları arasındaki en büyük farklılık kullandıkları yakıt tiplerine göredir. Bu tesisler ısı enerjisini elektrik enerjisine dönüştürmekte kullanıldığından bazı kaynaklarda enerji dönüşüm santrali olarak da geçer. Bazı termik santrallar elektrik üretmenin yanı sıra endüstriyel ve ısıtma amaçlı ısı üretimi, deniz suyunun tuzdan arındırılması gibi amaçlarla da kullanılır. İnsan üretimi CO2 emisyonunun büyük kısmını oluşturan fosil yakıtlı termik santralların çıktılarını azaltma yönünde yoğun çabalar harcanmaktadır.

Plütonyum-239, plütonyumun bir izotopudur. Plütonyum-239, nükleer silah üretiminde kullanılan birincil fisil izotoptur ancak uranyum-235 de bu amaç için kullanılır. Plütonyum-239 aynı zamanda uranyum-235 ve uranyum-233 ile birlikte termal spektrumlu nükleer reaktörlerde yakıt olarak kullanılabilen üç ana izotoptan biridir. Plütonyum-239'un yarı ömrü 24.110 yıldır.

<span class="mw-page-title-main">Nükleer reaktör</span> Uranyum, plütonyum vb. atom çekirdeklerinin parçalanmasından yararlanılarak enerji elde edilen kaynak

Nükleer reaktör, zincirleme çekirdek tepkimesinin başlatılıp sürekli ve denetimli bir biçimde sürdürüldüğü aygıtlardır. Nükleer reaktörler bazen nükleer enerjiyi başka bir tür enerjiye çevrilen santraller olarak kullanılırlar.

<span class="mw-page-title-main">Elektrik santrali</span> elektrik enerjisi üreten tesis

Elektrik santralı, elektrik üretecek bir fabrikayı meydana getiren tesislerin tümü.

<span class="mw-page-title-main">Akkuyu Nükleer Güç Santrali</span> Türkiyede inşa edilen nükleer enerji santrali

Akkuyu Nükleer Güç Santrali, Türkiye'nin yapımı devam eden ilk nükleer enerji santralidir. İdari olarak Mersin ilinin Gülnar ilçesine bağlı, en yakın yerleşim merkezi Büyükeceli beldesi olan sahada inşa edilmektedir. 27 Nisan 2023'te yakıt çubukları getirilmiş ve yapı nükleer tesis olarak anılmaya başlanmıştır. İlk reaktördeki elektriğin 2025 dolaylarında üretilmesi beklenmektedir.

<span class="mw-page-title-main">Rüzgâr gücü</span> Rüzgârdan elektrik enerjisi üretimi

Rüzgâr gücü, elektrik üretmek için rüzgâr türbinleri, mekaniksel güç için yel değirmeni, su veya kuyu pompalama için rüzgâr pompaları veya gemileri yürütmek için yelkenler kullanarak rüzgârın kullanışlı formundaki rüzgâr enerjisinin sonucudur.

Elektrik santralinin net kapasite faktörü (KF), santralin belli bir periyotta ürettiği toplam enerjinin tam kapasitede üretebileceği enerjiye bölümüdür. Kapasite faktörü kullanılan yakıt türüne ve santralin tasarımına bağlı olarak aşırı derecede değişir. Kapasite faktörü, uygunluk faktörü veya verimlilik ile karıştırılmamalıdır.

<span class="mw-page-title-main">Afşin-Elbistan B Termik Santrali</span>

Afşin-Elbistan B Termik Santrali Kahramanmaraş İli, Afşin İlçesi'nin, Çoğulhan Belde'sinde Çöllolar sektöründeki 544 milyon ton düşük kalorili linyit kömür rezervlerinin kullanılması ile Türkiye'de devamlı olarak artan enerji ihtiyacına katkı sağlamak amacıyla kurulmuş bir termik santraldir. Afşin-Elbistan B Termik Santrali, 4 üniteden oluşmaktadır ve her bir ünite 360MW kurulu güce sahiptir. Santralin toplam kurulu gücü 1440MW'tır. Mitsubishi, Babcock, Gama-Tekfen-Tokar Ortaklığı, Enka Konsorsiyumu tarafından inşa edilmiştir. Müşaviri ELTEM-TEK 'dir.

Nükleer reaktör güvenlik sistemleri; nükleer reaktörü kapatmak, kapatma durumunda onu korumak ve radyoaktif madde salınımını önlemek için kullanılan sistemlerdir.

<span class="mw-page-title-main">Elektrik üretimi</span>

Elektrik üretimi, elektrik ve diğer kaynaklardan birincil enerji üretme sürecidir. Elektrik üretiminin temel ilkeleri İngiliz bilim insanı Michael Faraday tarafından 1820'lerde ve 1830'ların başında keşfedildi. Onun temel yöntemi bugün hâlâ kullanılmaktadır: Elektrik, bakır gibi iletken bir telin manyetik bir alan içinde hareket ettirilmesi ile üretilir. Elektrik jeneratörü, bir mıknatıs içinde dönen sarılı iletken tellerin bulunduğu ve bu tellerin mıknatıs içinde dönmesiyle elektrik akımı üreten bir makinedir. Evlerimizde, işyerlerimizde, endüstride gereksinim duyduğumuz büyük miktardaki elektrik enerjisini elde etmek için, elektrik jeneratörlerini döndürecek büyük güç santrallarına ihtiyaç duyarız. Çoğu güç santrali, jeneratörü döndürmek için ısı üretiminde bulunurlar. Fosil yakıtlı santrallar ısı üretimi için doğal gaz, kömür ve petrol yakarlar. Nükleer santrallar da uranyum yakıtını parçalayarak ısı üretirler. Ancak bütün bu değişik tip santrallar ürettikleri ısıyı, suyu buhar haline dönüştürmek için kullanırlar. Oluşan buhar ise elektrik jeneratörüne bağlı olan türbine verilir. Su buharı, türbin şaftı üzerinde bulunan binlerce kanatçık üzerinden geçerken daha önce üretilen ısıdan almış olduğu enerjiyi kullanarak, türbin şaftını döndürür. İşte bu dönme, jeneratörün elektrik üretmek için gereksinim duyduğu mekanik harekettir. Jeneratörde oluşan elektrik ise iletim hatları denilen iletken teller ile kullanılacağı yere gönderilir. Türbinden çıkan, enerjisi diğer bir deyişle basınç ve sıcaklığı azalmış buhar ise yoğunlaştırıcı (kondenser) denilen bölümde soğutulup su haline dönüştürüldükten sonra, tekrar kullanılmak üzere santralın ısı üretilen bölümüne geri gönderilir. Yoğunlaştırıcıda soğutma işini sağlayabilmek için deniz, göl veya ırmaklarda bulunan su kullanılır. Su kaynaklarından uzak bölgelerde ise santralın hemen yanında bulunan ve uzaktan bakıldığı zaman geniş dev bacalara benzeyen soğutma kuleleri kullanılır. Bu kulelerin üzerinde görülen beyaz duman ise su buharıdır.

<span class="mw-page-title-main">Sıvı florür toryum reaktörü</span>

Sıvı florür toryum reaktörü, bir tür erimiş tuz reaktörüdür. LFTR, yakıt için florür esaslı, erimiş, sıvı tuzlu toryum yakıt çevrimini kullanır.

<span class="mw-page-title-main">Tekirdağ Doğal Gaz Kombine Çevrim B Santrali</span>

Tekirdağ Doğal Gaz Kombine Çevrim B Santrali, Tekirdağ'ın Marmaraereğlisi ilçesinde bulunan doğal gazdan kombine çevrim ile enerji üreten bir elektrik santralidir. Tesis inşasına Eylül 1996 yılında başlanmış ve 1999 yılında işletmeye alınmıştır. Günümüzde EÜAŞ tarafından işletilen santralin kurulu gücü 478 MW'tır.

<span class="mw-page-title-main">Shippingport Atom Enerjisi Santrali</span>

Shippingport Atom Enerjisi Santrali dünyanın yalnızca barış zamanı kullanımlarına ayrılmış ilk tam ölçekli atom elektrik santraliydi. Amerika Birleşik Devletleri, Pensilvanya, Beaver County'deki Ohio Nehri üzerindeki günümüz Beaver Valley Nükleer Üretim İstasyonunun yakınında, yaklaşık 40 km (40 km) uzaklıkta bulunmaktaydı.

<span class="mw-page-title-main">Taishan Nükleer Enerji Santrali</span>

Taishan Nükleer Enerji Santrali, Çin'in Guangdong eyaletine bağlı Taishan kentinde bulunan bir nükleer enerji santralidir. Santral, China Guangdong Nuclear Power Group (CGNPC) ile Électricité de France (EDF) arasında bir ortak girişim olan Guangdong Taishan Nuclear Power Joint Venture Company Limited (TNPC) tarafından işletilmektedir. Aynı zamanda EPR reaktöre sahip ilk nükleer santraldir.

<span class="mw-page-title-main">Turbo jeneratör</span>

Turbo jeneratör, elektrik gücü üretmek için su türbini, buhar türbini veya gaz türbini miline bağlı bir elektrik jeneratörüdür.