İçeriğe atla

David Hilbert

David Hilbert
Hilbert in 1912
Doğum23 Ocak 1862(1862-01-23)
Königsberg veya Wehlau, Prusya
Ölüm14 Şubat 1943 (81 yaşında)
Göttingen, Almanya
MilliyetAlman
EğitimKönigsberg Üniversitesi (PhD)
Tanınma nedeniHilbert'in temel teoremi
Hilbert aksiyomları
Hilbert problemleri
Hilbert programı
Einstein-Hilbert etkisi
Hilbert uzayı
Epsilon kalkülüs
EvlilikKäthe Jerosch
Çocuk(lar)Franz (b. 1893)
ÖdüllerLobachevsky Ödülü (1903)
Bolyai Ödülü (1910)
ForMemRS[1]
Kariyeri
DalıMatematik, Fizik ve Felsefe
Çalıştığı kurumlarKönigsberg Üniversitesi
Göttingen Üniversitesi
TezOn Invariant Properties of Special Binary Forms, Especially of Spherical Functions (1885)
Doktora
danışmanı
Ferdinand von Lindemann[2]
Doktora öğrencileri
 
Diğer önemli öğrencileriEdward Kasner
John von Neumann
EtkilendikleriImmanuel Kant[3]

David Hilbert, (/ˈhɪlbərt/;[4] Almanca telaffuz: [ˈdaːvɪt ˈhɪlbɐt]; 23 Ocak 1862, Königsberg - 14 Şubat 1943, Göttingen) ünlü Alman matematikçi. Geometriyi bir dizi aksiyoma indirgeyen ve matematiğin biçimsel temellerinin oluşturulmasına önemli katkıda bulunan Alman matematikçi David Hilbert integralli denklemlere ilişkin çalışmalarıyla fonksiyonel analizin 20. yüzyıldaki gelişmesine öncülük etmiştir.

1895 ile 1929 yılları arasında Göttingen Üniversitesi'nde profesörlük yaptı. Yirminci yüzyılın başlarında, Alman matematik okulunun önderi sayılır. 1897 yılında cisim kavramını ve cebirsel sayılar cisminin kuramını kurdu. 1890 yıllarındaki ilk çalışmaları sırasında, cebirsel geometri ve modern cebirde önemli bir rol oynayan çokterimli idealleri kuramının temellerini atarak, invaryantlar kuramının temel kanunlarını ortaya koymayı başardı. 1899 yılında, geometrinin temelleri üstüne araştırmalarının bit sentezi olan "Geometrinin Temelleri" adlı eserini yayınladı. Bu, matematiğin çeşitli bölümlerinde aksiyomlaştırma amacına yönelen birçok verimli çalışmaya yol açtı.

Somut görüntülere başvurmaktan kaçınan Hilbert, noktalar, doğrular ve düzlemler diye adlandırdığı "Üç nesne sistemini" matematiğe soktu. Ne oldukları kesin olarak gösterilmeyen bu nesneler, 5 grupta toplanmış 21 aksiyomla açıklanan bazı ilişkiler ortaya koyar. Ait olma, sıra, eşitlik veya denklik, paralellik ve süreklilik aksiyomu bunlardandır. Bundan sonra, aksiyomlardan birinin veya öbürünün doğrulanmadığı geometriler kurdu. Temel terimleri kendilerine aksiyomlarla yüklenen özelliklerden başka özellikleri bulunmayan mantıksal varlıklar olarak ele aldı. Klasik matematiği savunmak ve ondaki apaçıklığı göstermek için Brouwer ile giriştiği tartışmalar, matematikte geniş biçimli incelemelere yol açtı.

1930'da Göttingen Üniversitesi'nden emekli olan Hilbert, aynı yıl Königsberg'in fahri hemşeriliğine seçildi. Hilbert'in bu seçim nedeniyle yaptığı Naturerkennen und Logik (Doğanın Anlaşılması ve Mantık) başlıklı konuşmasının son tümcesi şöyledir:

Wir müssen wissen, wir werden wissen. (Bilmeliyiz, bileceğiz.)

1886'da Hilbert

Kaynakça

  1. ^ Weyl, H. (1944). "David Hilbert. 1862–1943". Obituary Notices of Fellows of the Royal Society. 4 (13): 547-553. doi:10.1098/rsbm.1944.0006. 
  2. ^ Mathematics Genealogy Project'te David Hilbert
  3. ^ Richard Zach, "Hilbert's Program" 22 Mayıs 2019 tarihinde Wayback Machine sitesinde arşivlendi., The Stanford Encyclopedia of Philosophy.
  4. ^ "Hilbert" 8 Ocak 2023 tarihinde Wayback Machine sitesinde arşivlendi.. Random House Webster's Unabridged Dictionary.

Ayrıca bakınız

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Matematik</span> nicelik, yapı, uzay ve değişim gibi konularla ilgilenen bilim dalı

Matematik ; sayılar, felsefe, uzay ve fizik gibi konularla ilgilenir. Matematikçiler ve filozoflar arasında matematiğin kesin kapsamı ve tanımı konusunda görüş ayrılığı vardır.

<span class="mw-page-title-main">Bernhard Riemann</span> Alman matematikçi (1826-1866)

Georg Friedrich Bernhard Riemann, analiz ve diferansiyel geometri dalında çok önemli katkıları olan Alman matematikçidir. Söz konusu katkılar daha sonra izafiyet teorisinin geliştirilmesinde önemli rol oynamıştır. Bu matematikçinin ismi aynı zamanda zeta fonksiyonu, Riemann hipotezi, Riemann manifoldları ve Riemann yüzeyleri ile de bağlantılıdır.

Eksiklik Teoremi, Kurt Gödel'in 1931 yılında doktorasında yer verdiği "Principia Mathematica Gibi Dizgelerin Biçimsel Olarak Karar Verilemeyen Önermeleri Üzerine" başlıklı makalesinde 4. önerme olarak geçer. Sezgisel olarak matematikte belitlere (aksiyom) dayanan her sistemin tutarlı olması dahilinde eksik olması gerektiğini bildirir.

Cebir sayılar teorisini, geometriyi ve analizi içine alan geniş bir matematik dalıdır. Temel matematik işlemlerinden, çember ve daire alanları bulmayı kapsayan geniş bir ilgi alanına sahiptir. Cebir, mühendislik ve eczacılık gibi birçok alanda kullanılmaktadır. Kuramsal cebir, ileri matematiğin bir dalı olmakla birlikte sadece uzmanlar tarafından çalışılan bir koldur.

<span class="mw-page-title-main">Göttingen Üniversitesi</span>

Göttingen Üniversitesi, Almanya'nın Göttingen şehrinde bulunan bir araştırma üniversitesidir. 2019 itibarıyla Göttingen Üniversitesi; 13 fakültesi, 32.000 öğrencisi ve 4.200'den fazla profesör ve akademisyeni ile eğitim vermeye devam etmektedir. Üniversite, Coimbra Grubu'na üyedir ve Göttingen'deki 4 Max Planck Enstitüsü ve 1 Leibniz Enstitüsü ile yakından iş birliği içerisindedir.

<span class="mw-page-title-main">Hermann Minkowski</span> Alman matematikçi ve fizikçi

Hermann Minkowski bir Alman matematikçi ve Königsberg, Zürih ve Göttingen'de profesörlük yaptı.

<span class="mw-page-title-main">Disquisitiones Arithmeticae</span>

Disquisitiones Arithmeticae, Alman matematikçi Carl Friedrich Gauss tarafından Latince yazılmış, ana konusu sayılar kuramı olan bir matematik kitabıdır. İlk baskısı 1801 yılında, Gauss henüz 24 yaşındayken yapılmıştır. Gauss bu eserinde, Fermat, Euler, Lagrange ve Legendre gibi matematikçilerin bulduğu sonuçları derlemiş ve bunların üzerine kendi katkılarını eklemiştir.

Kombinatorik, genellikle sonlu soyut nesneleri konu alan soyut matematik dalıdır. Dalla ilgilenen matematikçilere kombinatoryalist veya kombinatorist denir. Matematiğin, cebir, olasılık kuramı, ergodik teori ve geometri gibi farklı dallarıyla da ilgili olan kombinatorik ayrıca bilgisayar bilimi ve istatistiksel fizik gibi dallarda uygulanmıştır. Kombinatorik dahilindeki konulardan bazıları; belirli kriterleri karşılayan nesnelerin "sayılması", kriterlerin ne zaman karşılanmış olacağına karar vermek, kriterleri karşılayan nesnelerin inşa edilmesi ve analiz edilmesi, "en büyük", "en küçük" veya "optimal" nesneleri bulmak ve bu nesnelerin sahip olabileceği cebirsel yapıları bulmaktır.

<span class="mw-page-title-main">Hermann Weyl</span> Alman matematikçi (1885 – 1955)

Hermann Klaus Hugo Weyl bir Alman matematikçiydi.

<span class="mw-page-title-main">Eugene Wigner</span>

Eugene Paul "E. P." Wigner, Macar-Amerikalı teorik fizikçi ve matematikçiydi.

<span class="mw-page-title-main">Ferdinand von Lindemann</span> Alman matematikçi (1852–1939)

Carl Louis Ferdinand von Lindemann, 1882'de yayınlanan π'nin aşkın bir sayı olduğuna yani herhangi bir rasyonel katsayılı polinomun kökü olmadığına dair çalışması ile bilinen Alman matematikçidir.

<span class="mw-page-title-main">Ernst Zermelo</span> Alman mantıkçı ve matematikçi

Ernst Friedrich Ferdinand Zermelo, çalışmalarının matematiğin temelleri üzerinde büyük etkileri olan bir Alman mantıkçı ve matematikçiydi. Zermelo–Fraenkel aksiyomatik küme teorisini geliştirmedeki rolü ve iyi-sıralılık ilkesi için kanıtıyla tanınır. Ayrıca, 1929'da satranç oyuncularını sıralama üzerine çalışması, ikili karşılaştırma için bu yöntemi kullanan çeşitli uygulamalı alanlar üzerinde derin bir etkisi olmaya devam eden bir modelin ilk tanımıdır.

<span class="mw-page-title-main">George David Birkhoff</span> Amerikalı matematikçi (1884 – 1944)

George David Birkhoff en çok, şu anda ergodik teorem olarak adlandırılan şeyle tanınan Amerikalı matematikçi. Birkhoff, döneminde Amerikan matematiğinin en önemli liderlerinden biriydi ve yaşadığı süre boyunca birçok kişi tarafından önde gelen Amerikalı bir matematikçi olarak kabul edildi.

Tarih boyunca matematiğin konu çeşitliliği ve derinliği artmaktadır, matematiği kavrama, birçok konuyu matematiğin daha genel alanlarına göre sınıflandırma ve düzenleme için bir sistem gerektirir. Bir dizi farklı sınıflandırma şeması ortaya çıkmıştır ve bazı benzerlikleri paylaşsalar da, kısmen hizmet ettikleri farklı amaçlara bağlı olarak farklılıkları vardır. Ek olarak, matematik geliştirilmeye devam ettikçe, bu sınıflandırma şemaları da yeni oluşturulan alanları veya farklı alanlar arasında yeni keşfedilen bağlantıları dikkate alacak şekilde değişmelidir. Farklı alanlar arasındaki sınırı aşan, genellikle en aktif olan bazı konuların sınıflandırılması daha zor hale gelir.

Bu liste, matematiğe kayda değer katkılarda bulunan veya matematikte başarı sağlayan kadınların eksik bir listesidir. Bunlar arasında matematiksel araştırma, matematik eğitimi, matematik tarihi ve felsefesi, kamusal sosyal yardım ve matematik yarışmaları gibi alanlar/konular kapsama alınmıştır.

<span class="mw-page-title-main">Felix Klein</span> Alman matematikçi, Erlangen Programının yazarı (1849-1925)

Christian Felix Klein, grup teorisi, karmaşık analiz, Öklid dışı geometri ve geometri ile grup teorisi arasındaki ilişkiler üzerine yaptığı çalışmalarla tanınan Alman matematikçi ve matematik eğitimcisi. Klein'ın geometrileri temel simetri gruplarına göre sınıflandıran 1872 Erlangen programı, döneminin matematiğinin büyük kısmının etkili bir senteziydi.

<span class="mw-page-title-main">Hellmuth Kneser</span> Alman matematikçi (1898-1973)

Hellmuth Kneser, grup teorisi ve topolojiye kayda değer katkılarda bulunan bir Baltık Alman matematikçi.

Tarihte birleşik bir matematik teorisine ulaşmak için çeşitli girişimlerde bulunulmuştur. En büyük matematikçilerden bazıları, tüm konunun tek bir teoriye sığdırılması gerektiği görüşünü dile getirdiler.

<span class="mw-page-title-main">Cebirsel varyete</span>

Cebirsel varyeteler, matematiğin bir alt alanı olan cebirsel geometride çalışmanın ana nesneleridir. Klasik olarak cebirsel çeşitlilik, bir polinom denklem sisteminin gerçek veya karmaşık sayılar üzerindeki çözüm kümesi olarak tanımlanır. Modern tanımlamalar orijinal tanımın arkasındaki geometrik sezgiyi korumaya çalışırken kavramı birkaç farklı şekilde genelleştirir.

Matematikte, Alman matematikçi David Hilbert tarafından 1920'lerin başında formüle edilen Hilbert'in programı, matematiğin temellerini açıklığa kavuşturmaya yönelik ilk girişimlerin tutarsız olduğu bulunduğunda, matematiğin temel krizine önerilen bir çözümdü. Çözüm olarak Hilbert, mevcut tüm teorileri sonlu, sonlu bir aksiyom dizisine dayandırmayı ve bu aksiyomların tutarlı olduğuna dair bir kanıt sunmayı önerdi. Hilbert, gerçek analiz gibi daha karmaşık sistemlerin tutarlılığının daha basit sistemleri kullanarak kanıtlayabileceğini gösterdi.Sonuçta matematiğin tamamının tutarlılığı temel aritmetiğe indirgenebilir.