İçeriğe atla

Atomlararası potansiyel

Atomlararası (2 atom) potansiyelin tipik şekli.

Atomlar arası potansiyeller, uzayda belirli pozisyonlara sahip atomlardan oluşan bir atom sisteminin potansiyel enerjisini hesaplamak amaçlı kullanılan matematiksel fonksiyonlardır.[1][2][3][4] Atomlar-arası potansiyeller, kimya, moleküler fizik ve malzeme fiziğindeki moleküler mekanik ve moleküler dinamik simülasyonlarının fiziksel temeli olarak çokça kullanılırlar. Bazen kohezyon, termal genleşme ve malzemelerin elastik özellikleri gibi etkilerle bağlantılı olarak kullanılmaktadırlar.[5][6][7][8][9][10]

Ayrıca bakınız

Kaynakça

  1. ^ M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, Oxford, England, 1989.
  2. ^ Daan Frenkel and Berend Smit. Understanding molecular simulation: from algorithms to applications. Academic Press, San Diego, second edition, 2002.
  3. ^ R. Lesar. Introduction to Computational Materials Science. Cambridge University Press, 2013.
  4. ^ Brenner (2000). "The Art and Science of an Analytic Potential". Physica Status Solidi B. 217 (1). ss. 23-40. 
  5. ^ N. W. Ashcroft and N. D. Mermin. Solid State Physics.Saunders College, Philadelphia, 1976.
  6. ^ Charles Kittel. Introduction to Solid State Physics. John Wiley & Sons, New York, third edition, 1968.
  7. ^ Daw (1993). "The embedded-atom method: a review of theory and applications". Materials Science Reports. 9 (7–8). ss. 251-310. 
  8. ^ Tersoff (15 Nisan 1988). "New empirical approach for the structure and energy of covalent systems". Physical Review B. 37 (12). American Physical Society (APS). ss. 6991-7000. 
  9. ^ FINNIS (2007). "Bond-order potentials through the ages". Progress in Materials Science. 52 (2–3). Elsevier BV. ss. 133-153. 
  10. ^ Sinnott (2012). "Three decades of many-body potentials in materials research". MRS Bulletin. 37 (5). Cambridge University Press (CUP). ss. 469-473. 

Dış bağlantılar

İlgili Araştırma Makaleleri

Kimya, maddenin yapısını, özelliklerini, birleşimlerini, etkileşimlerini, tepkimelerini araştıran ve uygulayan bilim dalıdır. Kimya bilmi daha kapsamlı bir ifadeyle maddelerin özellikleriyle, sınıflandırılmasıyla, atomlarla, atom teorisiyle, kimyasal bileşiklerle, kimyasal tepkimelerle, maddenin hâlleriyle, moleküller arası ve moleküler kuvvetlerle, kimyasal bağlarla, tepkime kinetiğiyle, kimyasal dengenin prensipleriyle vb konularla ilgilenir. Kimyanın en önemli dalları arasında analitik kimya, anorganik kimya, organik kimya, fizikokimya ve biyokimya sayılır.

<span class="mw-page-title-main">Elektron</span> Temel elektrik yüküne sahip atomaltı parçacık

Elektron, eksi bir temel elektrik yüküne sahip bir atomaltı parçacıktır. Lepton parçacık ailesinin ilk nesline aittir ve bileşenleri ya da bilinen bir alt yapıları olmadığından genellikle temel parçacıklar olarak düşünülürler. Kütleleri, protonların yaklaşık olarak 1/1836'sı kadardır. Kuantum mekaniği özellikleri arasında, indirgenmiş Planck sabiti (ħ) biriminde ifade edilen, yarım tam sayı değerinde içsel bir açısal momentum (spin) vardır. Fermiyon olmasından ötürü, Pauli dışarlama ilkesi gereğince iki elektron aynı kuantum durumunda bulunamaz. Temel parçacıkların tamamı gibi hem parçacık hem dalga özelliklerini gösterir ve bu sayede diğer parçacıklarla çarpışabilir ya da kırınabilirler.

<span class="mw-page-title-main">Biyofizik</span> Fiziksel bilimlerdeki yöntemleri kullanarak biyolojik sistemlerin incelenmesi

Biyofizik, biyolojik olayları incelemek için fizikte geleneksel olarak kullanılan yaklaşım ve yöntemleri uygulayan disiplinler arası bir bilimdir. Biyofizik, moleküler seviyeden organizma ve popülasyon seviyesine kadar tüm biyolojik organizasyon ölçeklerini kapsar. Biyofiziksel araştırmalar biyokimya, moleküler biyoloji, fizikokimya, fizyoloji, nanoteknoloji, biyomühendislik, hesaplamalı biyoloji, biyomekanik, gelişim biyolojisi ve sistem biyolojisi ile önemli ölçüde örtüşmektedir.

<span class="mw-page-title-main">Maddenin hâlleri</span> maddenin farklı aşamalarında yer alan farklı hâlleri

Bir fizik terimi olarak maddenin hâli, maddenin aldığı farklı fazlardır. Günlük hayatta maddenin dört farklı hâl aldığı görülür. Bunlar; katı, sıvı, gaz ve plazmadır. Maddenin başka hâlleri de bilinir. Örneğin; Bose-Einstein yoğunlaşması ve nötron-dejeneje maddesi. Fakat bu hâller olağanüstü durumlarda gerçekleşir, çok soğuk ya da çok yoğun maddelerde. Maddenin diğer hâllerininde, örneğin quark-gluon plazmalar, mümkün olduğuna inanılır fakat şu an sadece teorik olarak bilinir. Tarihsel olarak, maddenin özelliklerindeki niteleyici farklılıklara dayanarak ayrım yapılır. Katı hâldeki madde bileşen parçaları ile bir arada tutulur ve böylece sabit hacim ve şeklini korur. Sıvı hâldeki madde hacmini korur fakat bulunduğu kabın şeklini alır. Bu parçalar bir arada tutulur ama hareketleri serbesttir. Gaz hâlindeki madde ise hem hacim olarak hem de şekil olarak bulunduğu kaba ayak uydurur.Bu parçalar ne beraber ne de sabit bir yerde tutulur. Maddenin plazma hâli ise, nötr atomlarda dahil, hacim ve şekil olarak tutarsızdır. Serbestçe ilerleyen önemli sayıda iyon ve elektron içerirler. Plazma, evrende maddenin en yaygın şekilde görülen hâlidir.

Astrofizik, gök fiziği ya da yıldız fiziği, gök cisimlerinin, uzaydaki konumu ile devinimlerindense yapılarını saptamak adına fizik ve kimya ilkelerini kullanan gökbilim dalı. Bu incelemeler için tek bilgi kaynağı gök cisimlerinden yayılan ışık ve diğer elektromanyetik dalgalardır. Bu dalgaları tespit eden aletler vasıtasıyla toplanan bilgiler, fizik ve kimya bilimlerinde elde edilen sonuçlarla karşılaştırılarak değerlendirilir ve yorumlanır.

<span class="mw-page-title-main">Plazma</span> gaz haldeki maddelerin manyetik kutuplaştırmaya bağlı doğrusal noktalarda oluşan fiziksel ve kimyasal reaksiyonun kontrollü etkileşim süreci

Plazma, gaz hâldeki maddelerin manyetik kutuplaştırmaya bağlı doğrusal noktalarda oluşan fiziksel ve kimyasal tepkimenin kontrollü etkileşim sürecine verilen genel ad. Daha kolay bir tanımla; atomun elektronlardan arınmış hâlidir.

<span class="mw-page-title-main">David Wineland</span> Amerikalı fizikçi

David Jeffrey Wineland Nobel ödüllü NIST laboratuvarında çalışan Amerikan fizikçi. İleri düzeyde optik özellikle de lazer soğutulmuş sıkışık iyonlar ve iyonları kullanarak kuantum hesapları yapmak üzerinedir. 2012 yılında Nobel Fizik ödülünü kuantum sistemlerinin ölçümü ve kullanımı sağlayan deneysel metotlar ile kazanmıştır, Serge Haroche ile paylaşmıştır.

<span class="mw-page-title-main">Walter Kohn</span> Amerikalı fizikçi (1923 – 2016)

Walter Kohn, John A. Pople ile birlikte 1998 Nobel Kimya Ödülü sahibi Yahudi kökenli Amerikalı fizikçi. Walter Kohn ve John Pople bu ödülü kuantum kimyası üzerine bir birlerinden bağımsız olarak yaptıkları çalışmalar üzerine almaya hak kazanmışlardır. Kohn özelde bu ödülü Atomlar arasındaki kimyasal bağları açıklamak üzere karmaşık matematiği kuantum mekaniğine uygulayarak geliştirdiği yoğunluk fonksiyonları teorisi sayesinde kazanmıştır.

<span class="mw-page-title-main">Moleküler dinamik</span>

Moleküler dinamik (MD), atomların ve moleküllerin fiziksel hareketlerini incelemek için bir bilgisayar simülasyon yöntemidir. Atomların ve moleküllerin sabit bir süre boyunca etkileşime girmesine izin verilir ve bu da sistemin dinamik evrimi hakkında bilgi verir. En yaygın versiyonda, atomların ve moleküllerin yörüngeleri, parçacıklar ve bunların potansiyel enerjileri arasındaki kuvvetlerin çoğu zaman atomlararası potansiyeller veya moleküler mekanik kuvvet alanları kullanılarak hesaplandığı, etkileşen parçacıkların bir sistemi için Newton'un hareket denklemlerinin sayısal olarak çözülmesiyle belirlenir. Metot ilk olarak 1950'lerin sonunda teorik fizik alanında geliştirildi, ancak günümüzde çoğunlukla kimyasal fizik, malzeme bilimi ve biyomoleküllerin modellenmesinde uygulanmaktadır.

Atomik, moleküler ve optik fizik, bir ya da birkaç atomun ölçeğinde, madde-madde ve ışık-madde etkileşimi çalışmadır ve enerji, birkaç elektron voltları etrafında ölçeklenir. Üç alanla yakından ilişkilidir. AMO teorisi, klasik, yarı klasik ve kuantum işlemlerini kapsar. Tipik olarak, teori ve emisyon uygulamaları, elektromanyetik yayılım ve emilme, spektroskopi analizi, lazer ve mazerlerin kuşağı ve genel olarak maddenin optik özellikleri, uyarılmış atom ve moleküllerden, bu kategorilere ayrılır.

<span class="mw-page-title-main">Lennard-Jones potansiyeli</span>

Lennard-Jones potansiyeli bağlı olmayan iki atom veya molekülün etkileşiminin potansiyel enerjisini atomlar veya moleküller arasındaki mesafeyi temel alarak ifade eden matematiksel bir modeldir. L-J potansiyeli moleküler simülasyon alanında en çok kullanılan moleküller arası potansiyeldir. Bu moleküller arası potansiyelin bir formu ilk olarak 1924'te John Lennard-Jones tarafından önerildi. L-J potansiyelinin en yaygın gösterimi şu şekildedir.

<span class="mw-page-title-main">Yapı</span> bir nesne veya sistemdeki birbiriyle ilişkili unsurların düzenlenmesi ve organizasyonu veya bu şekilde organize edilmiş nesne veya sistem

Yapı, maddi bir nesne veya sistemdeki birbiriyle ilişkili unsurların düzenlenmesi ve organizasyonu veya bu şekilde organize edilmiş nesne veya sistemdir. Maddi yapılar, binalar ve makineler gibi insan yapımı nesneleri ve biyolojik organizmalar, mineraller ve kimyasallar gibi doğal nesneleri içerir. Soyut yapılar bilgisayar bilimlerindeki veri yapılarını ve müzik formunu içerir. Yapı türleri arasında bir hiyerarşi, çoktan çoğa bağlantılar içeren bir bağlantı veya uzayda komşu olan bileşenler arasındaki bağlantıları içeren bir kafes bulunur.

Amerikan Fizik Topluluğu, dünyanın en büyük ikinci fizikçi topluluğudur. Topluluk, prestijli dergiler olan Physical Review ve Physical Review Letters'da dahil olmak üzere bir düzineden fazla bilimsel dergi yayınlar ve her yıl yirmiden fazla bilim toplantısı düzenler. APS, Amerikan Fizik Enstitüsü'nün bir üyesidir. Kate Kirby, APS'nin şu anki CEO'sudur, göreve Şubat 2015'te başlamıştır.

<span class="mw-page-title-main">Moleküler modelleme</span> Fiziksel simülasyonlarla kimyasal özellikleri keşfetme

Moleküler modelleme, moleküllerin davranışını modellemek veya taklit etmek için kullanılan teorik ve bilgisayarlı tüm yöntemleri kapsar. Bu yöntemler, küçük kimya sistemlerinden büyük biyolojik moleküllere ve malzeme gruplarına kadar değişen moleküler sistemleri incelemek için bilgisayarlı kimya, ilaç tasarımı, bilgisayarlı biyoloji ve malzeme bilimi alanlarında kullanılmaktadır. En basit hesaplamalar elle yapılabilir, ancak kaçınılmaz olarak makul büyüklükteki herhangi bir sistemin moleküler modellemesini bilgisayarların yapması gerekir. Moleküler modelleme yöntemlerinin ortak özelliği, moleküler sistemlerin atom düzeyinde tanımlanmasıdır. Bu, atomları en küçük bireysel birim olarak muamele edilmesini içerebilir veya protonları ve nötronları kuarkları, kuarkları, gluonlarıyla beraber ve elektronları da fotonlarıyla beraber açıkça modellemeyi içerebilir.

<span class="mw-page-title-main">Moleküler mekanik</span>

Moleküler mekanik moleküler sistemleri modellemek için klasik mekaniği kullanır. Born-Oppenheimer yaklaşımının geçerli olduğu varsayılır ve tüm sistemlerin potansiyel enerjisi, kuvvet alanları kullanılarak nükleer koordinatların bir fonksiyonu olarak hesaplanır. Moleküler mekanik, boyutu birkaç atom büyüklüğünde olan sistemlerden tutun da milyonlarca atomdan oluşan büyük sistemlere kadar uygulanabilir.

<span class="mw-page-title-main">Faz yüzey bilimi</span>

Faz yüzey bilimi, katı - sıvı arayüzleri, katı - gaz arayüzleri, katı - vakum arayüzleri ve sıvı - gaz arayüzleri dahil olmak üzere iki fazın arayüzünde meydana gelen fiziksel ve kimyasal olayların incelenmesidir. Yüzey kimyası ve yüzey fiziği alanlarını içerir. İlgili bazı pratik uygulamalar yüzey mühendisliği olarak sınıflandırılmaktadır. Bilim heterojen kataliz, yarı iletken cihaz üretimi, yakıt hücreleri, kendi kendine monte edilen tek tabakalar ve yapıştırıcılar gibi kavramları kapsar. Faz yüzey bilimi arayüz ve kolloid bilimi ile yakından ilgilidir. Arayüzey kimyası ve fizik her ikisi için de ortak konulardır. Yöntemler farklı. Buna ek olarak, arayüz ve kolloid bilimleri, arayüzlerin özelliklerinden dolayı heterojen sistemlerde ortaya çıkan makroskopik olayları inceler.

Bu liste kimyasal proses tesislerinin kütle ve enerji dengelerini simüle etmek için kullanılan yazılımların bir listesidir. Bu simülasyon yazılımları ile yapılabilen uygulamalar arasında tasarım çalışmaları, mühendislik çalışmaları, tasarım denetimleri, darboğaz giderme çalışmaları, kontrol sistemi doğrulanması, proses tasarımı, proses modelleme, proses simülasyonu, dinamik simülasyon, operatör eğitim simülatörleri, boru hattı yönetim sistemleri, üretim yönetim sistemleri ve dijital ikizler gibi çeşitli çalışmalar bulunmaktadır.

Bu liste malzeme bilimine ağırlık veren bilimsel dergileri sıralamaktadır.

Kate Page Kirby, Amerikalı bir fizikçi. Kirby, Şubat 2015'ten Aralık 2020'ye kadar Amerikan Fizik Topluluğu'nun (APS) CEO'suydu ve Amerikan Fizik Enstitüsü'nün yönetim kurulunda yer alıyordu. Kate Kirby, 1989'da "çeşitli moleküler fenomenlerin niceliksel açıklamasına kuantum kimyası yöntemlerinin yenilikçi uygulaması" sayesinde Amerikan Fizik Topluluğu'na (APS) üye seçildi. Fiziğe yaptığı katkılardan dolayı 1996 yılında Amerikan Bilim İlerleme Derneği'ne (AAAS) üye oldu.

<span class="mw-page-title-main">Raymond Thayer Birge</span> Amerikalı kimyager (1887–1980)

Raymond Thayer Birge Amerikalı fizikçi. Özellikle moleküler spektroskopi ve atom fiziği alanlarındaki çalışmaları ile tanınan Birge, Kaliforniya Üniversitesi, Berkeley'de uzun yıllar öğretim üyesi olarak görev yapmış ve burada fizik bölümünü yönetmiştir. Fiziksel sabitlerin hassas ölçümleri ve bu sabitlerin doğruluğunun artırılması konularında önemli katkılarda bulunmuştur.