İçeriğe atla

Kütle-enerji eşdeğerliği

Walk of Ideas, Almanya

E = mc2, fizikte kütle-enerji eşdeğerliğinin temel formülüdür.

Bu formül, enerji ile kütle arasında ilişki kurar. Bu formülde boşluktaki (vakumlanmış ortam) ışık hızının karesi, kilogram başına ne kadar nükleer enerji düştüğünü belirtir. Formülü bir cümlede anlatmak gerekirse: Bir maddede kilogram başına, boşluktaki ışığın metre saniye−1 cinsinden hızının karesinin sayısal değeri kadar enerji (joule) düşer.

(Vakumlanmış ortam) oluştuğunda (vakumsuz ortam) oluşmuş oluyor, vakumlayıcı vakumladığı ortamın ölçümünü doğru yapabilmesi için çektiği enerjiyi boşaltıp derecelendireceği ikinci vakumsuz ortamı kendi kendine oluşturup yedekleyemeyeceğinden ötürü hesap fiziksel olarak yanlıştır.

Formül

Eğer formülün harflerle simgelenmiş elemanları incelenirse:

E- Cismin enerjisi (joule)
m- Cismin kütlesi (kilogram)
c2- Işık hızının karesinin sayısal değeri (kilogram ile çarpıldığında metre/saniye değeri kullanılmalıdır).

Okunuşu: Bir madde, 1 kg ise enerjisi 89 875 517 873 681 764 J'dir.

Bir eşitlikle eşitliğin iki tarafındaki birimler birbirini sağlamalıdır. c2, kütlenin sahip olduğu nükleer enerjidir. Uluslararası birim sistemine göre; enerjinin birimi joule (J), kütlenin birimi kilogram (kg), hızın birimi de metre bölü saniye (ms−1)dir. Eğer birimler eşitliğe yazılırsa:

1 Joule = 89875517873681764 kg.m^2/s^2

Bulunuşu

Albert Einstein, kendisine kadar süregelen bir yargıyı yıkarak bilim dünyasında yeni bir çığır açmıştır. Ondan öncesinde kütle ile enerji arasında bir bağlantı kurulmamıştır ve ayrı olgular oldukları varsayılmıştır. 19. yüzyılda kimyagerlerin hassas aygıtları olmadığı için kimsenin dönüşüm sonrası kütle kaybından haberleri yoktu. Basit tepkimeler sonrası oluşan kütle kaybı fark edilememişti. Einstein ise bütün bilinenleri yıkarak çağdaş bilimin temel taşlarını atmıştır. Ona göre her şey enerjidir, yani maddeler de çok yoğun enerjilerdir. Kimyasal reaksiyonlar sonrası küçük de olsa kütlenin bir kısmı enerjiye dönüşmektedir. Bu durumu açıklamak için eşitliğin az farklı formülasyonu ilk defa Albert Einstein tarafından 1905'te ünlü makalelerinde yayımlanmıştır. Aynı yıl önermiş olduğu özel görelilik teorisinin bir sonucu olarak türetmiştir. Birim kütleden inanılmaz enerji elde edilebileceğini gösteren bu formül sayesinde diğer insanlar tarafından atom bombası da icat edilir.

Popüler kültüre etkileri

Bu formül fizikçi olmayanlar için bile en ünlü eşitliklerden bir tanesidir. Neredeyse Albert Einstein ile özdeşleşmiştir. Ayrıca formülün popüler kültürdeki yeri de büyüktür. Birçok film ve televizyon programlarında bu formüle rastlamak mümkündür. Ayrıca müzik endüstrisine de ilham kaynağı olmuştur. Count Basie'nin 1957'deki albümünün adı E=mc2dir. Ayrıca Mariah Carey'in 2008'de çıkardığı albümünün adı da aynıdır. Big Audio Dynamite müzik grubunun da 1986 yılında yazdıkları şarkı da E=mc2'dir.

Formülle ilgili ek bilgiler

Kinetik enerji olarak ifade edilir. Görelilik formüllerinde, ifadenin altında 0 olursa değer klasik değerli, normal yazılırsa göreli değerlidir. Mesela m0 sabit kütle, m ise göreli kütledir.

Bu KE ifadesi ile eşdeğerdir.

Eşitliğe momentum (momentum=p, göreli momentum olmak üzere) da eklenirse;

olur. O da 'ye eşittir. E=mc^2 eşitliği, p=0 olduğunda geçerlidir.

Enerjiye fotonlardan bahsedilirken çokça kullanılan pc ifadesinden bakınca ilginç bir sonuca ulaşılır. Fakat ilginç olan, bulduktan hemen sonra zaten ışık hızı (c) sabit olduğundan E=mc^2'nin buna işaret ettiğinin anlaşılmasıdır. Bu ifadeye şu şekilde ulaşılabilir.

eşitliği için pc 'e eşittir. Eşitliğin karesini alınca,

'ye ulaşılır.

Kısa bir hesaptan sonra, sonuca ulaşılır:

Fotonlar için E=p.c geçerlidir.

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Foton</span>

Foton, Modern Fizik'te ışık, radyo dalgaları gibi elektromanyetik radyasyonu içeren Elektromanyetik Alan kuantumu yani ışığın temel birimidir. Ayrıca, Elektromanyetik Kuvvet'lerde kuvvet taşıyan, kütlesiz temel parçacıktır. Parçacık terimi; genelde kütlesi olan veya ne kadar küçük olursa olsun bir cismi var olan anlamıyla kullanılır. Ancak, fotonlar için kullanılırken "en küçük enerji yumağı"nı temsil eden bir birimi ifade eder. Fotonlar Bozon sınıfına aittir. Kütlesiz oldukları için boşluktaki hızı 299.792.458 m/s dir.

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

<span class="mw-page-title-main">Kinetik enerji</span> bir cismin harekiyle oluşan enerji

Kinetik enerji, fiziksel bir cismin hareketinden dolayı sahip olduğu enerjidir.

Fizikte, kütle, Newton'un ikinci yasasından yararlanılarak tanımlandığında cismin herhangi bir kuvvet tarafından ivmelenmeye karşı gösterdiği dirençtir. Doğal olarak kütlesi olan bir cisim eylemsizliğe sahiptir. Kütleçekim kuramına göre, kütle kütleçekim etkileşmesinin büyüklüğünü de belirleyen bir çarpandır (parametredir) ve eşdeğerlik ilkesinden yola çıkılarak bir cismin kütlesi kütleçekimden elde edilebilir. Ama kütle ve ağırlık birbirinden farklı kavramlardır. Ağırlık cismin hangi cisim tarafından kütleçekime maruz kaldığına göre ve konumuna göre değişebilir.

<span class="mw-page-title-main">Açısal momentum</span> Fiziksel nicelik

Açısal momentum, herhangi bir cismin dönüş hareketine devam etme isteğinin bir göstergesidir ve bu nicelik cismin kütlesine, şekline ve hızına bağlıdır. Açısal momentum bir vektör birimidir ve cismin belirli eksenler üzerinde sahip olduğu dönüş eylemsizliği ile dönüş hızını ifade eder.

Madde dalgaları veya de Broglie dalgaları, maddenin dalga-parçacık ikiliğini yansıtan kavramdır. Kuram 1924'te, Louis de Broglie tarafından doktora tezinde önerilmiştir. De Broglie denklemleri dalga boyunun parçacığın momentumuyla ters orantılı olduğunu gösterir ve ayrıca de Broglie dalga boyu diye isimlendirilir. Ayrıca madde dalgalarının tekrarsıklığı, de Broglie tarafından türetildiği gibi, parçacığın toplam enerjisi E'ye – kinetik enerjisinin ve potansiyel enerjisinin toplamı – doğru orantılıdır.

Elektronvolt (eV) değeri yaklaşık 1.6 x 10−19 J olan enerjiye verilen addır. Tanım olarak bir elektronun, boşlukta, bir voltluk elektrostatik potansiyel farkı katederek kazandığı kinetik enerji miktarıdır. Diğer bir deyişle, 1 volt çarpı elektronun yüküne eşittir. 1 volt temel yük ile çarpıldığında buna eşit olmaktadır.

<span class="mw-page-title-main">Kütle çekimi sabiti</span> nesneler arasındaki yerçekimi kuvvetini kütleleri ve mesafeleriyle ilişkilendiren fiziksel sabit

Kütleçekim sabiti MKS sisteminde yaklaşık 6,67x10ˉ¹¹ değerine sahiptir ve de G harfi ile gösterilir.

Klein-Gordon Denklemi, Schrödinger denkleminin bağıl/göreli (relativistik) olan versiyonudur ve atomaltı fizikte kendi ekseni etrafında dönmeyen parçacıkları tanımlamada kullanılır. Oskar Klein ve Walter Gordon tarafından bulunmuştur.

<span class="mw-page-title-main">Kurtulma hızı</span> bir cismin kendisini bağlayan kütleçekim alanından kurtulak için varması gereken hız

Fizikte, kurtulma hızı kütleçekim alanındaki herhangi bir cismin kinetik enerjisinin söz konusu alana bağıl potansiyel enerjisine eşit olduğu andaki hızıdır. Genellikle üç boyutlu bir uzayda bulunan cismin kendisini etkileyen kütleçekim alanından kurtulabilmesi için ulaşması gereken sürati ifade eder.

<span class="mw-page-title-main">Dairesel yörünge</span>

Astrodinamikte dışmerkezliği sıfıra eşit olan eliptik yörünge olarak özetlenebilecek dairesel yörünge, tanım olarak fizikte sabit eksen etrafında rotasyonun tipik bir örneğidir. Burada bahsedilen eksen, hareket düzlemine dik olarak kütle merkezlerinden geçen doğrudur.

<span class="mw-page-title-main">Enerji biçimleri</span>

Enerji biçimleri, iki ana grubu ayrılabilir: kinetik enerji ve potansiyel enerji. Diğer enerji türleri bu iki enerji türünün karışımdan elde edilir.

Fizikte Planck kütlesi (mP), Planck birimleri olarak bilinen doğal birimler sisteminde kütle birimidir.

Planck kuvveti (FP), Planck birimleri olarak bilinen doğal birimler sisteminde kuvvet birimidir.

Lorentz faktörü veya Lorentz terimi bir cismin herhangi bir hıza sahip olmadığı durumla bir hıza sahip olması sırasında kütle, zaman ve uzay ölçümlerinde oluşacak ölçüm farklılıklarını açıklayan niceliktir. Lorentz faktörü, referans çerçeveleri arasında dönüşüm yapılabilmesini sağlayan Lorentz dönüşümünden doğar. Faktör, Lorentz elektrodinamiği içindeki erken görünümü yüzünden Hollandalı fizikçi Hendrik Lorentz adına ithaf edilmiştir.

Elektromanyetik kütle başlangıçta, elektromanyetik alanın ya da öz-enerjinin ne kadar olduğunu gösteren, yüklü parçacıkların kütlesine katkıda bulunan, bir klasik mekanik kavramıydı. İlk defa 1881 yılında J.J. Thomson tarafından elde edildi ve bir süreliğine tek başına eylemsizlik kütlesinin dinamik açıklaması olarak da kabul edildi. Bugün, kütle, momentum, hız ve tüm enerji çeşitlerinin ilişkileri, elektromanyetik enerji de dahil, Albert Einstein'ın özel görelilik ve kütle-enerji eşdeğerliği bazında incelenmektedir. Temel parçacıkların kütle nedeni olarak, göreceli Standart Model çerçevesinde Higgs mekanizması halen kullanılmaktadır. Ayrıca, yüklü parçacıkların elektromanyetik kütle ve iç enerjileri ile ilgili problemler hala araştırılmaktadır.

<span class="mw-page-title-main">Esnek çarpışma</span>

Esnek çarpışma ya da elastik çarpışma, iki cismin arasındaki esnek çarpışma, toplam momentum ve toplam kinetik enerjinin çarpışmadan önce ve sonra sabit kaldığı çarpışmadır. Bilardo topu çarpışmaları ve herhangi bir sıcaklıkta hava moleküllerinin duvarla çarpışması yaklaşık olarak esnektir. Gerçek esnek çarpışmalar, atom ve atom-altı parçacıklar arasında gerçekleşir. Esnek çarpışmalar sadece diğer formlara dönüşen net kinetik enerji yoksa gerçekleşir.

<span class="mw-page-title-main">Negatif kütle</span>

Negatif kütle, teorik fizikte normal kütlenin zıt işaretlisi olan varsayımsal madde kavramıdır, örneğin -2 kg. Bu durum bir ya da daha fazla enerji koşulunu ihlal eder ve negatif kütle için çekimin kuvvet olması gerektiği ve pozitif yönlü ivmeye sahip olması gerektiği anlaşmazlığından kaynaklanan bazı garip özellikler gösterir. Negatif kütle, solucan deliği inşa etme gibi bazı kuramsal teorilerde kullanılır. Egzotik maddeye benzeyen en yakın bilinen örnek Casimir etkisi tarafından üretilen sözde negatif basınç yoğunluğunun alanıdır. Genel izafiyet teorisinin kütleçekimini ve pozitif, negatif enerji yüklerinin hareket yasasını iyi tanımlamasına rağmen negatif kütle dolayısıyla başka temel kuvvetleri içermez. Diğer yandan, standart model, temel parçacıkları ve diğer temel kuvvetleri iyi tanımlamasına ve kütleçekimi kütle merkezini ve eylemsizliği derinlemesine içermesine rağmen kütleçekimini içermez. Negatif kütlenin kavramının daha iyi anlaşılabilmesi için kütleçekimini açık bir şekilde ifade eden modelle birlikte diğer temel kuvvetler de gerekebilir.

<span class="mw-page-title-main">Durgun kütle</span>

Değişmez kütle, durgun kütle, gerçek kütle, tam kütle ya da sınır sistemleri durumunda basitce kütle, bir objenin veya Lorentz dönüşümlerine göre tüm referans çerçevelerinde aynı olan objelerin sisteminin toplam enerji ve momentum karakteridir. Eğer momentum çerçevesinin bir merkezi sistemde oluşuyorsa, sistemin değişmez kütlesi toplam enerjinin ışık hızının karesine bölümüyle bulunur. Diğer referans çerçevelerinde, sistemin enerjisi artar yalnız sistemin momentumu bundan çıkarılmıştır, yani değişmez kütle aynı kalır.

<span class="mw-page-title-main">Yörünge mekaniği</span>

Yörünge mekaniği veya astrodinamik, roketler ve diğer uzay araçlarının hareketini ilgilendiren pratik problemlere, balistik ve gök mekaniğinin uygulamasıdır. Bu nesnelerin hareketi genellikle Newton'un hareket kanunları ve Newton'un evrensel çekim yasası ile hesaplanır. Bu, uzay görevi tasarımı ve denetimi altında olan bir çekirdek disiplindir. Gök mekaniği; daha genel olarak yıldız sistemleri, gezegenler, uydular ve kuyruklu yıldızlar gibi kütle çekimi etkisinde bulunan yörünge sistemleri için geçerlidir. Yörünge mekaniği; uzay araçlarının yörüngelerine ait yörünge manevraları, yörünge düzlemi değişiklikleri ve gezegenler arası transferler gibi kavramlara odaklanır ve itici manevralar sonuçlarını tahmin etmek için görev planlamacıları tarafından kullanılır. Genel görelilik teorisi, yörüngeleri hesaplamak için Newton yasalarından daha kesin bir teoridir ve doğru hesaplar yapmak ya da yüksek yerçekimini ihtiva eden durumlar söz konusu olduğunda bazen gereklidir.