İçeriğe atla

Klein-Gordon denklemi

Klein-Gordon Denklemi, (bazı kaynaklarda Klein-Fock-Gordon Eşitliği olarak da ifade edilir) Schrödinger denkleminin bağıl/göreli (relativistik) olan versiyonudur ve atomaltı fizikte kendi ekseni etrafında dönmeyen parçacıkları tanımlamada kullanılır. Oskar Klein ve Walter Gordon tarafından bulunmuştur.

Matematiksel Açılım

Serbest bir parçacık için Schrödinger denklemi aşağıdaki gibidir.

burada momentum operatörü, ise del operatörüdür.

Hamiltonyen işlemcisi (Ĥ);

Hamiltonyen işlemcisi, toplam enerjiyi karakterize eden ve içinde (kinetik enerjiyi + potansiyel enerjiyi) barındıran bir operatördür.

Schrödinger denklemi Einstein'ın Özel Görelilik Kuramı'nı hesaba katmadığı için özellikle atomaltı parçacık hesaplamalarında yetersiz kalır.

Özel Görelilik Kuramı'ndan enerjinin tanımını ihraç edip

sonra, bu formüle kuantum mekanik momentum operatörünü eklediğimizde,

sonucunu alırız. Ancak bu eşitlik karekökten dolayı gayrilokal ve düzensiz bir yapıdadır ve bu yüzden Klein ve Gordon eşitliğin daha objektif bir versiyonunu tümdengelmişlerdir.

burada

ve

olur.

Bu yeni operatöre d'Alembert operatörü denir ve günümüzde skaler (sıfır rotasyonlu) parçacıklar için alan denklemi olarak kullanılmaktadır.

Göreli serbest parçacık çözümü

Serbest bir parçacığın Klein-Gordon denklemi aşağıdaki gibi yazılabilir.

Yukarıdaki ifadenin göreli olmayan versiyonu ise bu şekilde ifade edilebilir:

Ancak elbette bu durumda,

engeli oluşacaktır. Göreli olmayan parçacıklarda olduğu gibi, aynı ifadenin enerji ve momentum için olan versiyonları,

ve

şeklinde formüle edilir. Bu noktada eşitliği k ve ω bilinmeyenleri için çözüp yukarıda değindiğimiz engel denklemine ihraç ettiğimizde m>0 kütleli parçacıkların enerji ve momentum değerleri arasındaki bağlantıyı formüle etmiş oluruz.

Kütlesiz parçacıklar için, yukarıdaki denklemde m`i 0 olarak alabiliriz. Bu durumda kütlesiz parçacığın enerji ve momentumu arasında,

ilişkisine ulaşırız.

Aksiyom

Klein-Gordon denklemi aşağıdaki aksiyom kullanılarak tümdengelinebilir.

burada Klein-Gordon alanını, ise kütleyi ifade etmektedir.

Ayrıca bakınız

Dış bağlantılar

İlgili Araştırma Makaleleri

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

Adını İngiliz fizikçi Paul Dirac'tan alan spinli ve göreli kuantum mekaniği denklemi,

Schrödinger denklemi, bir kuantum sistemi hakkında bize her bilgiyi veren araç dalga fonksiyonu adında bir fonksiyondur. Dalga fonksiyonunun uzaya ve zamana bağlı değişimini gösteren denklemi ilk bulan Erwin Schrödinger’dir. Bu yüzden denklem Schrödinger denklemi adıyla anılır. 1900 yılında Max Planck'ın ortaya attığı "kuantum varsayımları"nın ardından, 1924'te ortaya atılan de Broglie varsayımı ve 1927'de ortaya atılan Heisenberg belirsizlik ilkesi bilim dünyasında yeni ufukların doğmasına sebep olmuştur. Bu gelişmeler Max Planck'ın kuantum varsayımları ve Schrödinger'in dalga mekaniği ile birleştirilerek kuantum mekaniğini ortaya çıkarmıştır.

Potansiyel kuyusu, bir parçacığın bağlı olması durumunu modelleyen sistemdir. Tek boyutta uygulanan potansiyel,

<span class="mw-page-title-main">Dalga fonksiyonu</span>

Kuantum fiziğinde dalga fonksiyonu izole bir kuantum sistemindeki kuantum durumunu betimler. Dalga fonksiyonu karmaşık değerli bir olasılık genliğidir ve sistem üzerindeki olası ölçümlerin olasılıklarının bulunmasını sağlar. Dalga fonksiyonu için en sık kullanılan sembol Yunan psi harfidir ψ ve Ψ.

<span class="mw-page-title-main">Mie saçılması</span>

Mie saçılması veya Mie teorisi, düzlem bir elektromanyetik dalganın (ışık) homojen bir küre tarafından saçılmasını ifade eder. Maxwell denklemlerinin Lorenz–Mie–Debye çözümü olarak da bilinmektedir. Denklemlerin çözümü sonsuz bir vektör küresel harmonik serisi şeklinde yazılır. Saçılma ismini fizikçi Gustav Mie'den almaktadır; analitik çözümü ilk kez 1908 yılında yayınlanmıştır.

<span class="mw-page-title-main">Kuantum mekaniği</span> atom altı seviyede çalışmalar yapan bilim dalı

Kuantum mekaniği veya kuantum fiziği, atom altı parçacıkları inceleyen bir temel fizik dalıdır. Nicem mekaniği veya dalga mekaniği adlarıyla da anılır. Kuantum mekaniği, moleküllerin, atomların ve bunları meydana getiren elektron, proton, nötron, kuark, gluon gibi parçacıkların özelliklerini açıklamaya çalışır. Çalışma alanı, parçacıkların birbirleriyle ve ışık, x ışını, gama ışını gibi elektromanyetik ışınımlarla olan etkileşimlerini de kapsar.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

Compton dalgaboyu bir parçacığın kuantum mekaniği özelliğidir. Compton dalgaboyu Arthur Compton tarafından elektronların foton saçılması olayı izah edilirken gösterilmiştir. Bir parçacığın Compton dalga boyu; enerjisi parçacığın durgun kütle enerjisine eşit olan fotonun dalgaboyuna eşittir. Parçacığın Compton dalgaboyu ( λ) şuna eşittir:

Kuantum harmonik salınıcı, klasik harmonik salınıcın benzeşiğidir. Rastgele seçilmiş potansiyeli denge noktası civarında harmonik potansiyele yakınsanabildiğinden nicem mekanğindeki en önemli model sistemlerden biridir. Dahası, nicem mekaniğinde kesin analitik çözümü olan çok az sistemden biridir.

Foton polarizasyonu klasik polarize sinüsoidal düzlem elektromanyetik dalgasının kuantum mekaniksel açıklamasıdır. Bireysel foton özdurumları ya sağ ya da sol dairesel polarizasyona sahiptir. Süperpozisyon özdurumu içinde olan bir foton lineer, dairesel veya eliptik polarizasyona sahip olabilir.

Schrödinger gösterimleri, fizikte, kuantum mekaniğinin bir formülasyonudur. Öyle ki durum vektörleri zaman içinde değişir, ancak operatörler zamana göre sabit kalır. Bu Heisenberg gösteriminden ve etkileşim tasvirden farklıdır çünkü Heisenberg gösteriminde durum vektörleri zaman içinde durumlarını sabit tutarken gözlemlenebilir operatörler değişir ve etkileşim tasvirinde durum vektörleri ve gözlenebilir operatörlerin ikisi de zaman içinde değişir. Schrödinger ve Heisenberg gösterimleri aktif ve pasif dönüşümler gibi birbirleriyle ilişkilidir ve aynı ölçüm istatistiklerine sahiptirler.

Lamb kayması, adını Willis Lamb'den alan, hidrojen atomunun kuantum elektrodinamiğindeki 2S1/2 ve 2P1/2 enerji düzeyleri arasındaki küçük farklılıktır. Dirac denklemine göre, 2S1/2 ve 2P1/2 orbitalleri (yörüngeleri) aynı enerjiye sahip olmalıdır. Ancak, boşluktaki elektronlar arasındaki etkileşim, 2S1/2 ve 2P1/2 enerji düzeylerinde küçük bir enerji değişimine sebep olur. Lamb ve Robert Retherford bu değişimi 1947'de ölçmüşlerdir ve bu ölçüm, ıraksamayı açıklamak için tekrar normalleştirme teorisine teşvik edici bir unsur olmuştur. Bu, Julian Schwinger, Richard Feynman, Ernst Stueckelberg ve Sin-Itiro Tomonaga tarafından geliştirilmiş modern kuantum elektrodinamiğinin müjdecisiydi. Lamb, 1955 yılında Lamb kayması ile ilgili keşiflerinden ötürü Nobel Fizik Ödülü'nü kazandı.

Atom fiziğinde, iki-elektron atomu veya Helyumumsu atom olarak adlandırılan, sadece iki elektron ve Z kadar yüklü bir çekirdek ihtiva eden kuantum mekaniksel bir sistemdir. Bu husus, Pauli dışlama ilkesinin ana rolü üstlendiği ilk çok elektronlu sistemler meselesidir.

Fizikte, Kuantum mekaniğinde, eşevreli hal klasik harmonik salıngaca benzeyen kuantum harmonik salıngacının nicel hareketidir. Kuantum dinamiğinin Erwin Schrödinger tarafından Scrödinger denklemlerine çözüm ararken 1926 yılında türetilen ilk örneğidir. Örneğin, eşevre hali parçacığın salınımsal hareketini açıkları. Bu haller, John R. Klauderin ilk makalelerinde alçalma operatörü ve fazla tamamlanmış aile teşkili olarak özvektör adında tanımlanmıştır. Eşevre halleri,[ışığın kuantum kuramında ve diğer bozonik kuantum alanlarında Roy J. Glauber’in 1963 yılındaki çalışmaları tarafından geliştirilmiştir. Salınan alanın eşevre hali, klasik sinüs dalga hareketine benzeyen, devamlı lazer dalgası gibi olan kuantum halidir. Ancak, eşevre hali kavramı kayda değer biçimde genellenmiş ve sinyal sürecini niceleme, görüntü işleme alanlarında matematiksel fizikte ve uygulamalı matematik oldukça geniş ve önemli bir konu olmuştır. Bu hususta, kuantum harmonik salıngacı ile bağlantılı eşevreli haller genel olarak standart eşevreli haller ya da Gauss işlevi halleri olarak anılır.

18. yy. ve sonrasında geliştirilmiş, genellikle vektörel mekanik olarak nitelendirilen ve orijinalinde Newton mekaniği olarak bilinen analitik mekanik, klasik mekaniğin matematiksel fizik kaynaklarıdır. Model harekete göre analitik mekanik, Newton’un vektörel enerjisinin yerine, hareketin iki skaler özelliği olan kinetik enerjiyi ve potansiyel enerjiyi kullanır. Bir vektör, yön ve nicelik ile temsil edilirken bir skaler, nicelik ile(yoğunluğu belirtirken) temsil edilir. Özellikle Lagrange mekaniği ve Hamilton mekaniği gibi analitik mekanik de, sorunları çözmek için bir sistemin kısıtlamalarının ve tamamlayıcı yollarının kavramını kullanarak klasik mekaniğin kullanım alanını etkili bir şekilde yapılandırır. Schrödinger, Dirac, Heisenberg ve Feynman gibi kuram fizikçileri bu kavramları kullanarak kuantum fiziğini ve onun alt başlığı olan kuantum alan teorisini geliştirdiler. Uygulamalar ve eklemelerle, Einstein’a ait kaos teorisine ve izafiyet teorisine ulaşmışlardır. Analitik mekaniğin çok bilindik bir sonucu, modern teorik fiziğin çoğunu kaplayan Noether teoremidir.

Kuantum tüneli, parçacığın bariyer boyunca olan kuantum mekaniğini ifade eder. Bu, Güneş gibi yıldızlar dizisinde meydana gelen nükleer birleşmeler gibi birçok fiziksel olayda önemli bir rol oynar. Tünel diyotu, kuantum bilgisayarı ve taramalı tünelleme mikroskobu gibi modern araçlarda önemli uygulamaları vardır. Fiziksel olay olarak etkisi ve kabul görülürlüğü 20. yüzyılın başlarında ve ortalarına doğru geldiği tahmin ediliyor.

Katı hal fiziğinde, kristal momentum veya kuasimomentum, momentuma okşak, kristal örgüde elektronlarla bağlı yöneydir. Bu örgünün dalga yöneyleri ile tanımlanır:

Bu madde Vektör Analizi'ndeki önemli özdeşlikleri içermektedir.

Fizik, mühendislik ve yer bilimleri alanında adveksiyon, bir maddenin veya miktarın bir sıvının toplu hareketi ile taşınmasıdır. O maddenin özellikleri onunla birlikte taşınır. Genellikle maddenin büyük çoğunluğu da bir sıvıdır. Madde ile taşınan özellikler, enerji gibi korunan özelliklerdir. Bir adveksiyon örneği, bir nehirdeki kirleticilerin veya alüvyonun aşağı akıştaki toplu su akışıyla taşınmasıdır. Yaygın olarak tavsiye edilen başka bir miktar enerji veya entalpidir. Burada sıvı, su veya hava gibi termal enerji içeren herhangi bir malzeme olabilir.