İçeriğe atla

Schrödinger denklemi

Schrödinger denklemi, bir kuantum sistemi hakkında bize her bilgiyi veren araç dalga fonksiyonu adında bir fonksiyondur. Dalga fonksiyonunun uzaya ve zamana bağlı değişimini gösteren denklemi ilk bulan Erwin Schrödinger’dir. Bu yüzden denklem Schrödinger denklemi adıyla anılır. 1900 yılında Max Planck'ın ortaya attığı "kuantum varsayımları"nın ardından, 1924'te ortaya atılan de Broglie varsayımı ve 1927'de ortaya atılan Heisenberg belirsizlik ilkesi bilim dünyasında yeni ufukların doğmasına sebep olmuştur. Bu gelişmeler Max Planck'ın kuantum varsayımları ve Schrödinger'in dalga mekaniği ile birleştirilerek kuantum mekaniğini ortaya çıkarmıştır.

Schrödinger denklemi kapalı formda şöyle ifade edilebilir: Burada H, Hamiltonyen' i temsil eder. Hamiltonyen, parçacığın toplam enerjisini veren bir operatördür ve şeklinde ifade edilir. İlk terim kinetik enerjiyi, ikinci terim ise potansiyel enerjiyi temsil eder. Momentum operatörü denklemde yerine konursa Schrödinger denkleminin sol tarafı elde edilir.

Bu zamana bağlı Schrödinger denklemidir. Denklemin sağ tarafının sıfıra eşit olması durumunda zamandan bağımsız Schrödinger denklemi karşımıza çıkar. Burada değerinde Planck sabiti, m; parçacığın kütlesi, V; potansiyel enerji, ; parçacığa eşlik eden dalga fonksiyonudur. Parçacığın kinetik enerjisinin hareket etmezken sahip olduğu iç enerjisinden oldukça büyük olması durumunda enerjisi göreli olarak ifade edileceğinden şeklinde olur. Bu sayede elde edilen Schrödinger denklemine, Relativistik (göreli) Schrödinger Denklemi denir ve olmak üzere şu formda yazılır.

Denklemin çözümü için, parçacığın bulunduğu duruma göre içinde olduğu potansiyeller şöyle özetlenebilir:

V'nin sıfır olması durumunda serbest parçacık durumu incelenir. Sıfırdan farklı durumlarda parçacığın enerjisinin uygulanan potansiyelden büyük veya küçük olması koşullarına göre değişen çözümler bulunur. Parçacığın enerjinisinin uygulanan potansiyelden küçük olması ancak belirli bir genişlikten sonra bu potansiyel engelin kaldırılması durumunda Tünel Etkisi gözlemlenir. Akım yoğunluğu hesaplanarak geçme ve yansıma katsayıları bulunur.

Değişen potansiyellere örnek; basit harmonik titreştirici ve Coulomb potansiyelleridir. Bunlar bir katıdaki atomların titreşimi ve atomdaki çekirdeğe bağlı elektronların hareketini kapsar.

Zaman-bağımlı denklem

Fiziksel durum(durgun durum) üzerindeki Schrödinger denklemi formudur(özel durum için aşağıya bakınız). En iyi genel form zaman-bağımlı Schrödinger denklemidir, bu ise zamanla gelişen sistemin bir tanımını verir:[1]:143

Denklem-1

Zaman-bağımlı Schrödinger denklemi (genel)

Burada i sanal birimdir, ħ 2π ile Planck sabitinin oranıdır, "∂/∂t" sembolü bir t zamana gore kısmi türev ile ayırır, Ψ kuantum sistemin dalga fonksiyonudur ve Hamiltonyen işlemcidir (herhangi bir dalga fonksiyonu toplam enerjiyi karakterize eder ve duruma bağlı olarak farklı biçimler alır).

Bir dalga fonksiyonu bu göreli olmayan Schrödinger denklemi V=0 ile tatmin edicidir. Diğer bir deyişle, bu boş uzay aracılığıyla bir parçacığın serbestçe seyahatine karşılıktır.Dalga fonksiyonunun burada gerçel kısmı çiziliyor.

En ünlü örneği bir elektrik alanı içinde (ama bir manyetik alan değil çünkü karakterize edilmiş yani Hamiltonyen işlemcisiyle toplam enerji, parçacığın kararlılığına bağlı olarak manyetik alan (enerji formu) özelliğini parçacık halinde kaybetmiştir. Bakınız Pauli denklemi) tek bir parçacık taşıyan göreli olmayan Schrödinger denklemidir :

Denklem-2

Zaman-bağımlı Schrödinger denklemi (tek ama göreli olmayan parçacık)

burada m parçacığın kütlesidir, V potansiyel enerjidir, ∇2 Laplasyendir ve Ψ dalga fonksiyonudur (bu bağlamda daha kesin bir ifadeyle, "konum uzay-dalga fonksiyonu" olarak adlandırılır). Bu daha net bir ifadeyle, "toplam enerji kinetik enerji artı potansiyel enerjiye eşittir", ama şartlar aşağıda açıklanan sebeplerden ötürü bilmediğiniz formlar haline gelir.

Verilen bu bir doğrusal kısmi diferansiyel denklem özel diferansiyel işlemciler içerir. Bu ayrıca bir difüzyon denklemidir, ama aksine ısı denklemi, bu tek ayrıca verilen bir dalga denklemi sanal birim geçici terim içinde mevcuttur.

"Schrödinger denklemi" terimine hem genel denkleminin (ilk yukarıda kutu), hem de belirli bir göreli olmayan sürümün (ikinci yukarıda ve bunun varyasyonları kutu) de başvurabilirsiniz. kuantum mekaniği boyunca kullanılan, genel denklem her şey için, Hamiltoniyen'den çeşitli karmaşık ifadeler takarak Dirac denklemi'nden kuantum alan teorisi'ne kadar gerçekten oldukça geneldir. Özel relativistik sürümü basitleştirilmiş birçok durumda gerçekliğe oldukça doğru yaklaşım, ama diğerleri de çok yanlıştır. (ayrıca görelilik kuantum mekaniği ve görelilik kuantum alan teorisi).

Schrödinger denklemini uygulamak için, Hamilton operatörü daha sonra Schrödinger denklemine yerleştirilir sistemi oluşturan taneciklerin kinetik ve potansiyel enerji için muhasebe sistemi için ayarlanır. Oluşan kısmi diferansiyel denklem sistemi ile ilgili bilgi içeren dalga fonksiyonu, için çözülmüştür.

Zaman-bağımsız denklem

bu her üç satırın bir dalga fonksiyonudır.,bunlar zaman-bağımlı Schrödinger denklemi için uygun bir harmonik titreşimcidir.Sol:dalga fonksiyonunun gerçek kısmı (mavi) ve sanal kısmı (kırmızı). Sağ:Verilen bir konumda bu dalga fonksiyonu ile bulunan parçacığın olasılık dağılımıdır . üst iki satır durağan durumların örnekleridir, bunlar durgun dalgalara karşılıktır. Alt satır bir durumun bir örneğidir bu bir durağan durum değildir. sağ sütunda gösterilen durağan duruma "durağanlık" denir.

zaman-bağımsız Schrödinger denklemi tahmin edilen dalga fonksiyonları durgun dalgalar formu olabilir, adı durağan durumlar (ayrıca "yörüngeler" denir, atomik yörüngeler içinde olarak veya moleküler yörüngeler). Eğer durağan durumun üzerinde sınıflandırılmış ve anlaşılıyorsa bu durum burada kendine özgü bir şekilde önemlidir ve herhangi durum için zaman-bağımlı Schrödinger denklemi çözmeye kolayca alınır. Zaman-bağımlı Schrödinger denklemi durağan durum tanıtan denklemdir. (Bu yalnız kullanılıyor ise Hamiltonyenin kendisi zaman üzerinde bağımlı değildir. Genel olarak, dalga fonksiyonuna hala bir bağımlılık vardır! )

Denklem-1

Zaman-bağımsız Schrödinger denklemi (genel)

Durum denkleminin sözel ifadesi:

Belli bir Ψ dalga fonksiyonu üzerinde Hamiltonian operatör hareketleri ise,ve sonuç aynı Ψ dalga fonksiyonuna orantılı, ise Ψ bir durağan durumdur ve sabit orantılılıktır, E, Ψ durumunun enerjisidir.

Zaman-bağımlı Schrödinger denklemi aşağıda daha fazla tartışıldı. doğrusal cebir terminolojisi içinde, bu denklem bir özdeğer denklemidir.

Daha önce olduğu gibi, göreli-olmayan Schrödinger denklemi için en ünlü bulgu bir tek parçacık bir elektrik alanı içinde taşınır (ama bir manyetik alan değil):

Denklem-2

Zaman-bağımsız Schrödinger denklemi (tek göreli olmayan parçacık)

Ayrıca bakınız

Notlar

  1. ^ Shankar, R. (1994). Principles of Quantum Mechanics. 2nd. Kluwer Academic/Plenum Publishers. ISBN 978-0-306-44790-7. 

Kaynakça

İlgili Araştırma Makaleleri

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

Adını İngiliz fizikçi Paul Dirac'tan alan spinli ve göreli kuantum mekaniği denklemi,

<span class="mw-page-title-main">Tünel etkisi</span>

Serbest veya bağlı bir parçacığa enerjisinden büyük bir potansiyel engelinin uygulanması sonra engelin kaldırılması durumunda parçacığın sızabilme, diğer bir deyişle engelin içinden geçebilme olayıdır. Makro düzeyde bahsedilecek olunursa insanın duvarın içinden geçebilmesi durumu olarak tasvir edilebilir. Serbest parçacık için problemi tek boyutta ele alırsak, parçacığa etki eden potansiyel matematiksel olarak:

Potansiyel kuyusu, bir parçacığın bağlı olması durumunu modelleyen sistemdir. Tek boyutta uygulanan potansiyel,

<span class="mw-page-title-main">Dalga fonksiyonu</span>

Kuantum fiziğinde dalga fonksiyonu izole bir kuantum sistemindeki kuantum durumunu betimler. Dalga fonksiyonu karmaşık değerli bir olasılık genliğidir ve sistem üzerindeki olası ölçümlerin olasılıklarının bulunmasını sağlar. Dalga fonksiyonu için en sık kullanılan sembol Yunan psi harfidir ψ ve Ψ.

Klein-Gordon Denklemi, Schrödinger denkleminin bağıl/göreli (relativistik) olan versiyonudur ve atomaltı fizikte kendi ekseni etrafında dönmeyen parçacıkları tanımlamada kullanılır. Oskar Klein ve Walter Gordon tarafından bulunmuştur.

<span class="mw-page-title-main">Kuantum mekaniği</span> atom altı seviyede çalışmalar yapan bilim dalı

Kuantum mekaniği veya kuantum fiziği, atom altı parçacıkları inceleyen bir temel fizik dalıdır. Nicem mekaniği veya dalga mekaniği adlarıyla da anılır. Kuantum mekaniği, moleküllerin, atomların ve bunları meydana getiren elektron, proton, nötron, kuark, gluon gibi parçacıkların özelliklerini açıklamaya çalışır. Çalışma alanı, parçacıkların birbirleriyle ve ışık, x ışını, gama ışını gibi elektromanyetik ışınımlarla olan etkileşimlerini de kapsar.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

<span class="mw-page-title-main">Akım fonksiyonu</span>

Akım Fonksiyonu, eksen simetrisi ile üç boyutta olduğu kadar iki boyutta sıkıştırılamaz akışlar için tanımlanır. Akış hızı bileşenleri, skaler akış fonksiyonunun türevleri olarak ifade edilebilir. Akım fonksiyonu, kararlı akıştaki partiküllerin yörüngelerini gösteren akım çizgileri, çıkış çizgileri ve yörüngeyi çizmek için kullanılabilir. İki boyutlu Lagrange akım fonksiyonu, 1781'de Joseph Louis Lagrange tarafından tanıtıldı. Stokes akım fonksiyonu, eksenel simetrik üç boyutlu akış içindir ve adını George Gabriel Stokes'tan almıştır.

<span class="mw-page-title-main">Liénard-Wiechert potansiyelleri</span>

Liénard-Wiechert potansiyelleri yüklü bir noktasal parçacığın hareketi esnasında oluşan klasik elektromanyetik etkiyi bir vektör potansiyeli ve bir skaler potansiyel cinsinden ifade eder. Maxwell denklemlerinin doğrudan bir sonucu olarak bu potansiyel relativistik olarak doğru, tam, zamana bağlı etkileri de içeren, noktasal parçacığın hareketine herhangi bir sınır konulmaksızın en genel durum için geçerli olan fakat kuantum mekaniğinin öngördüğü etkileri açıklayamayan elektromanyetik bir alan tanımlar. Dalga hareketi formunda yayılan elektromanyetik ışıma bu potansiyellerden elde edilebilir.

Compton dalgaboyu bir parçacığın kuantum mekaniği özelliğidir. Compton dalgaboyu Arthur Compton tarafından elektronların foton saçılması olayı izah edilirken gösterilmiştir. Bir parçacığın Compton dalga boyu; enerjisi parçacığın durgun kütle enerjisine eşit olan fotonun dalgaboyuna eşittir. Parçacığın Compton dalgaboyu ( λ) şuna eşittir:

Foton polarizasyonu klasik polarize sinüsoidal düzlem elektromanyetik dalgasının kuantum mekaniksel açıklamasıdır. Bireysel foton özdurumları ya sağ ya da sol dairesel polarizasyona sahiptir. Süperpozisyon özdurumu içinde olan bir foton lineer, dairesel veya eliptik polarizasyona sahip olabilir.

Schrödinger gösterimleri, fizikte, kuantum mekaniğinin bir formülasyonudur. Öyle ki durum vektörleri zaman içinde değişir, ancak operatörler zamana göre sabit kalır. Bu Heisenberg gösteriminden ve etkileşim tasvirden farklıdır çünkü Heisenberg gösteriminde durum vektörleri zaman içinde durumlarını sabit tutarken gözlemlenebilir operatörler değişir ve etkileşim tasvirinde durum vektörleri ve gözlenebilir operatörlerin ikisi de zaman içinde değişir. Schrödinger ve Heisenberg gösterimleri aktif ve pasif dönüşümler gibi birbirleriyle ilişkilidir ve aynı ölçüm istatistiklerine sahiptirler.

Atom fiziğinde, iki-elektron atomu veya Helyumumsu atom olarak adlandırılan, sadece iki elektron ve Z kadar yüklü bir çekirdek ihtiva eden kuantum mekaniksel bir sistemdir. Bu husus, Pauli dışlama ilkesinin ana rolü üstlendiği ilk çok elektronlu sistemler meselesidir.

18. yy. ve sonrasında geliştirilmiş, genellikle vektörel mekanik olarak nitelendirilen ve orijinalinde Newton mekaniği olarak bilinen analitik mekanik, klasik mekaniğin matematiksel fizik kaynaklarıdır. Model harekete göre analitik mekanik, Newton’un vektörel enerjisinin yerine, hareketin iki skaler özelliği olan kinetik enerjiyi ve potansiyel enerjiyi kullanır. Bir vektör, yön ve nicelik ile temsil edilirken bir skaler, nicelik ile(yoğunluğu belirtirken) temsil edilir. Özellikle Lagrange mekaniği ve Hamilton mekaniği gibi analitik mekanik de, sorunları çözmek için bir sistemin kısıtlamalarının ve tamamlayıcı yollarının kavramını kullanarak klasik mekaniğin kullanım alanını etkili bir şekilde yapılandırır. Schrödinger, Dirac, Heisenberg ve Feynman gibi kuram fizikçileri bu kavramları kullanarak kuantum fiziğini ve onun alt başlığı olan kuantum alan teorisini geliştirdiler. Uygulamalar ve eklemelerle, Einstein’a ait kaos teorisine ve izafiyet teorisine ulaşmışlardır. Analitik mekaniğin çok bilindik bir sonucu, modern teorik fiziğin çoğunu kaplayan Noether teoremidir.

Kuantum tüneli, parçacığın bariyer boyunca olan kuantum mekaniğini ifade eder. Bu, Güneş gibi yıldızlar dizisinde meydana gelen nükleer birleşmeler gibi birçok fiziksel olayda önemli bir rol oynar. Tünel diyotu, kuantum bilgisayarı ve taramalı tünelleme mikroskobu gibi modern araçlarda önemli uygulamaları vardır. Fiziksel olay olarak etkisi ve kabul görülürlüğü 20. yüzyılın başlarında ve ortalarına doğru geldiği tahmin ediliyor.

<span class="mw-page-title-main">Lagrange mekaniği</span> Klasik mekaniğin yeniden formüle edilmesi

Lagrange mekaniği, klasik mekaniğin yeniden formüle edilmesidir. İtalyan-Fransız matematikçi ve astronom Joseph-Louis Lagrange tarafından 1788’de geliştirilmiştir.

Hamilton mekaniği klasik mekaniğin tekrar formüle edilmesiyle geliştirilmiş ve Hamilton olmayan klasik mekanik ile aynı sonuçları öngörmüş bir teoridir. Teoriye daha soyut bir bakış açısı kazandıran Hamilton mekaniği klasik mekaniğe kıyasla farklı bir matematiksel formülasyon kullanmaktadır. Tarihi açıdan önemli bir çalışma olan Hamilton mekaniği ileriki yıllarda istatistiksel mekanik ve kuantum mekaniği konularının da geliştirilmesine önemli katkılarda bulunmuştur.

Katı hal fiziğinde, kristal momentum veya kuasimomentum, momentuma okşak, kristal örgüde elektronlarla bağlı yöneydir. Bu örgünün dalga yöneyleri ile tanımlanır:

<span class="mw-page-title-main">Doğrusal olmayan Schrödinger denklemi</span> denklem

Doğrusal olmayan Schrödinger denklemi veya nonlineer Schrödinger denklemi (NLSE), Schrödinger denkleminin doğrusal olmayan bir versiyonudur. Denklem ağırlıklı olarak doğrusal olmayan optik fiberlerde ve düzlemsel dalga kılavuzlarında ışığın iletimini modellemek için kullanılır. Diğer kullanım alanları arasında Bose-Einstein yoğunlaşmaları, akışkanlar mekaniğindeki yüzey dalgaları, sıcak plazmalardaki Langmuir dalgaları ve solitonlar bulunmaktadır. Denklem, lineer versiyonunun aksine bir kuantum durumunun değişimini betimlemez.