İçeriğe atla

Ekserji

Ekserji (İng.; exergy), Termodinamik bir sistemin ihtiva ettiği potansiyel enerjisinin, herhangi bir referans haline göre kullanılabilirliğinin bir göstergesidir. Ekserji tersinir bir süreç sonucunda sistem çevre ile denge sağladığı takdirde, oluşan entropi sonucu kullanılamaz hale gelen enerji düşüldükten sonra, teorik olarak elde edilebilecek maksimum faydalı iş miktarı olarak da tanımlanabilir. Sistem enerjetiğinde ise ekserji entropiden arındırılmış enerji olarak tanımlanır.

Enerji işlem yoktan var edilemez ve yok edilemez sadece bir şekilden diğerine dönüşür (Termodinamik kanunları Birinci Yasası).Enerjinin aksine, ekserji tersinir olmayan işlemlerde her zaman yok edilir. Örneğin ortamdan kaybedilen ısı miktarı buna bir örnektir (Termodinamiğin ikinci yasası). Sistemin dış ortamında, yok edilen ekserji ile aynı oranda bir entropi artışı meydana gelir (Entropi ). Yok edilen ekserjiye anerji (İngilizce: Anergy) denilir.[1] İzentropik sistemler için ekserji ve enerji kavramları kendi aralarında yer değiştirebilirler ve izentropik sistemlerde anerji yoktur (İzentropik).

Sembolü X veya Ex olup enerji birimleri ile aynı birimleri (kWh, Joule gibi) içerir.

Birim zamanda olan ekserji miktarına ekserji akımı denir ve sembolün üzerinde nokta ile gösterilir. Birimi güç birimleri ile aynı birimleri (kW gibi ) içerir.

Bir sistemin verilen bir halde yapabileceği en çok yararlı iş ekserji (kullanılabilirlik) olarak tanımlanır.  İş yapabilme yeteneği ya da sahip olunan fırsatlar (Hepbasli, 2006) olarak da ifade edilebilen ekserji terimi, sistem ve çevrenin halleriyle ilişkili bir özelliktir.

Çevresiyle denge halinde olan bir sistemin kullanılabilirliği sıfırdır. Bu durumda iken sistem ölü haldedir (Çengel, 1996; Moran, 1982).  Aynı zamanda ekserji, çevredeki mevcut değerlerin durumu ile belirlenen andaki sistemin durumunun getirdiği nicelikler için gerekli en az teorik iştir (şaft işi veya elektrik işi) .  Dolayısıyla ekserji, sistemin durumu ile çevrenin durumundaki farklılığın bir ölçüsüdür (Tsatsaronis, 2006).

Kapalı veya açık bir sistemde yapılan gerçek iş enerjinin korunumu denklemleriyle hesaplanabilir.  Eğer sistemin hacmi değişiyorsa, yapılan işin bir bölümü çevreye karşı yapılır ve çevre işi Wçevre adını alır.  Bu iş, P0 basıncındaki çevre havayı itmek için kullanılır ve başka bir amaca yöneltilmez.  Toplam gerçek iş ile çevre işi arasındaki fark yararlı iş Wy olarak bilinir (Çengel ve Boles, 1996) ve bir bağıntı ile tanımlanır.

Sistemlerin Toplam Ekserjisi Potansiyel, Kinetik, Termal ve Kimyasal ekserjilerin birleşiminden oluşur.

  • Potansiyel Ekserji : ExP
  • Kinetik Ekserji  : ExK
  • Termal Ekserji : ExT
  • Kimyasal Ekserji : ExC
  • Toplam Ekserji : Ex = ExP + ExK + ExT + ExC

Ayrıca bakınız

Dış bağlantılar

Kaynakça


İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Enerji</span> bir sistemin iş yapabilme yeteneğinin ölçüsü

Fizikte enerji, bir cisime veya fiziksel bir sisteme aktarılan, işin performansında ve ısı ve ışık biçiminde tanınabilen niceliksel özelliktir. Enerji korunan bir miktardır; Enerjinin korunumu yasası, enerjinin istenen biçime dönüştürülebileceğini ancak yaratılamayacağını veya yok edilemeyeceğini belirtir. Uluslararası Birimler Sisteminde (SI) enerjinin ölçü birimi joule'dür (J).

<span class="mw-page-title-main">Termodinamik</span> enerji bilimi

Termodinamik; ısı, iş, sıcaklık ve enerji arasındaki ilişki ile ilgilenen bilim dalıdır. Basit bir ifadeyle termodinamik, enerjinin bir yerden başka bir yere ve bir biçimden başka bir biçime transferi ile ilgilenir. Bu süreçteki anahtar kavram, ısının, belirli bir mekanik işe denk gelen bir enerji biçimi olmasıdır.

<span class="mw-page-title-main">Sıcaklık</span> maddenin sıcak ya da soğuk gibi ortak kavramları olduğunu ifade etmek kullanılan fiziksel özellik

Sıcaklık ya da suhunet, bir cismin sıcaklığının ya da soğukluğunun bir ölçüsüdür. Gazlar için kinetik enerji, mutlak sıcaklık dereceleriyle orantılıdır.

<span class="mw-page-title-main">Carnot çevrimi</span>

Carnot çevrimi, Sadi Carnot tarafından 1820'lerde ortaya konmuş özel bir termodinamik çevrimdir ve Benoît Paul Émile Clapeyron tarafından 1830 ve 1840'lı yıllarda geliştirilmiştir.

Brayton çevrimi, genel olarak gaz türbinlerinde kullanılan, periyodik bir prosestir. Günümüzde geçerli olan gaz akışkanlı güç çevrimleri içinde önemli bir yer tutar. Diğer içten yanmalı güç çevrimleri gibi açık bir sistem olmasına rağmen; termodinamik analiz için egzoz gazlarının ikinci bir ısı değiştirgecinden geçtikten sonra içeri alınıp tekrar kullanıldığı farzedilir ve kapalı bir sistem gibi analize uygun hale gelir. İsmini, mucidi olan George Brayton’dan almıştır. Aynı zamanda Joule çevrimi olarak da bilinir.

<span class="mw-page-title-main">Entropi</span> termodinamik terim

Entropi, fizikte bir sistemin mekanik işe çevrilemeyecek termal enerjisini temsil eden termodinamik terimidir. Çoğunlukla bir sistemdeki rastgelelik ve düzensizlik (kaos) olarak tanımlanır ve istatistikten teolojiye birçok alanda yararlanılır. Sembolü S'dir.

Termodinamiğin(Isıldevinimin) ikinci yasası, izole sistemlerin entropisinin asla azalamayacağını belirtir. Bunun sebebini izole sistemlerin termodinamik dengeden spontane olarak oluşmasıyla açıklar. Buna benzer olarak sürekli çalışan makinelerin ikinci kanunu imkânsızdır.

<span class="mw-page-title-main">Termodinamik kanunları</span>

Termodinamik yasaları, termodinamiğin temelini oluşturan dört yasadır. Termodinamik proseslerdeki ısı ve transferlerinin yapısını tanımlar.

<span class="mw-page-title-main">Gibbs serbest enerjisi</span>

Gibbs serbest enerjisi entalpiden, entropi ve mutlak sıcaklığın çarpımının çıkarılmasıyla elde edilen termodinamik bir değişkendir. Genel olarak kimyasal bir reaksiyonun enerji potansiyelinin işe dönüştürülebilmesiyle ilgilidir.

<span class="mw-page-title-main">Esneklik enerjisi</span>

Esneklik enerjisi, bir maddenin veya fiziksel bir sistemin bünyesinde depolanan ve hacmini veya şeklini bozmak için gereken işin potansiyel mekanik enerjidir. Katı mekaniği önceleri, katı cisim ve maddenin anlaşılması için geliştirilmiş bilim dalıdır. Esneklik potansiyel enerjisi eşitliği, mekanik dengenin pozisyonunu hesaplamak için kullanılır. Enerji potansiyeldir ve kinetik enerji gibi başka enerji biçimlerine dönüştürülebilir. Eşitlik matematiksel olarak şöyle gösterilir

Termal enerji, ortam veya sistem sıcaklığı sonucunda ortamdaki veya sistemdeki bir cismin veya maddenin potansiyel ve kinetik enerjileri toplamını ifade eden bir enerji biçimidir. Sistemde sıcaklık olmadığı müddetçe bu niceliği tanımlamak zor ve hatta anlamsız olabilir. Bu durumda herhangi bir termal iş söz konusu değildir.

<span class="mw-page-title-main">Enerji dönüşümü</span> Enerjiyi bir veya iki formdan diğerine dönüştürme süreci

Enerji dönüşümü enerjinin bir biçimden diğerine dönüşümüdür. Fizikte enerji terimi bir sistemdeki belirli değişiklikleri oluşturma kapasitesini açıklar. Dönüşümde entropinin sınırlamaları göz ardı edilir. Sistemlerin toplam enerji dönüşümü, yalnızca enerjinin eklenmesi veya çıkarılması ile sağlanabilir. Termodinamiğin birinci kanununa göre enerji, dönüştürülebilen bir büyüklüktür. Bir sistemin toplam kütle miktarı, enerjisinin bir ölçüsüdür. Bir sistemdeki enerji dönüştürülebildiğinden dolayı, farklı bir hale veya başka bir biçime dönüşebilir. Çoğu haldeki enerji, birçok fiziksel iş yapmak için kullanılabilir. Enerji doğal süreçler veya makinelerde kullanılabilir. Ayrıca ısı, ışık veya harekete dönüşebilir. Örneğin bir güneş pili, güneş ışınımını elektrik enerjisine dönüştürür ve böylece ampul yanar veya bilgisayara güç sağlanır.

<span class="mw-page-title-main">Termodinamik ve istatistiksel fizik kronolojisi</span> Termodinamik ve istatistiksel fizik ile ilgili olayların kronolojisidir.

Termodinamik ve istatistiksel fizik ile ilgili olayların kronolojisidir.

Fermi enerjisi, elektronların toplam kimyasal potansiyeli ya da elektrokimyasal potansiyeli olarak tanımlanır ve µ veya şeklinde gösterilir. Bir cismin Fermi seviyesi, bir termodinamik miktardır ve termodinamik iş, cisme bir elektron eklemeye ihtiyaç duyduğundan ötürü, Fermi seviyesi önemlidir. Fermi seviyesinin açık bir şekilde anlaşılması-elektronik özelliklerin belirlenmesinde Fermi seviyesinin elektronik bağ yapısı ile olan ilişkisi ve bir elektronik devrede Fermi seviyesinin voltaj ve yük akışı ile olan ilişkisi- katı hal fiziğinin anlaşılması için gereklidir.

<span class="mw-page-title-main">Termodinamiğin üçüncü kanunu</span>

Termodinamik'in üçüncü yasası bazen ‘mutlak sıfır sıcaklığında dengede olan sistemlerin özelliklerine ilişkin’ olarak şu şekilde tanımlanır:

<span class="mw-page-title-main">Brownian ratchet</span>

Termal ve istatistiksel fizik felsefesinde, Brownian ratchet ya da Feynman-Smoluchowski ratchet 1912 tarihinde Polonyalı fizikçi Marian Smoluchowski tarafından analiz edilen ve 11 Mayıs 1962 tarihinde, Kaliforniya teknoloji enstitüsünde, Nobel Ödülü kazanmış Amerikan fizikçi Richard Feynman tarafından bilinir hale getirilen görünür devridaim makinedir. Bu basit makine küçük kısa kürekler ve mandallı çark içerir. Maxwell'in cini olarak görülse de, termal denge sistemindeki gelişigüzel dalgalanmadan işten kazanç sağlayabilmek için kullanılır. Termodinamiğin ikinci yasası ihlali, termal denge sistemindeki gelişigüzel dalgalanmayı kapsar. Detaylar Feynman ve diğerleri tarafından analiz edilmiş ve neden bunu yapamadığını göstermişlerdir.

<span class="mw-page-title-main">Gibbs paradoksu</span>

İstatistiksel mekanik, entropinin yarı-klasik türevinde parçacıkların ayırt edilemezliklerini hesaba almaz, kapsamlı olmayan bir entropi ifadesi verir. Bu, Josiah Willard Gibbs'den sonra, Gibbs paradoksu olarak bilinen bir paradoksa yol açar. Paradoks kapalı sistemlerin entropisini azaltmak için termodinamiğin ikinci yasasını ihlale izin verir. Konuyla ilgili bir paradoks da "karıştırma paradoks" udur. Eğer entropi tanımının parçacık permütasyonu göz ardı edilerek değiştirilmesi gerektiğini göz önüne alırsak, paradoks önlenir.

<span class="mw-page-title-main">Termodinamik tarihi</span>

Termodinamiğin tarihi fizik tarihinde, kimya tarihinde ve genel olarak bilimin tarihinde temel bir aşamadır. Bilim ve teknolojinin birçok yerinde termodinamiğin bağıntısı sebebiyle, termodinamiğin tarihi klasik mekanik, kuantum mekaniği, manyetizma ve kimyasal hız bilimin gelişimi ile ince bir biçimde dokunmuştur ve meteoroloji, bilgi teorisi ve biyoloji, fizyoloji gibi daha uzak pratik alanlara ve buhar makinesi, iç yakımlı makine, kriyojeni ve elektrik üretimi gibi teknolojik gelişmelerle de bağlantılıdır. Termodinamiğin gelişmesi atom teorisi tarafından sürdü ve sürdürüldü. Ayrıca, ustaca bir yaklaşımla, olasılık ve istatistikte yeni yönleri harekete geçirdi.

<span class="mw-page-title-main">Termodinamik serbest enerji</span>

Termodinamik serbest enerji, mühendislik ve bilimdeki kimyasal veya termal süreçlerin termodinamiğinde kullanılan bir kavramdır. Serbest enerjideki değişim, bir termodinamik sistemin sabit sıcaklıktaki bir süreçte yapabileceği maksimum iş miktarıdır ve işareti, işlemin termodinamik olarak uygun mu yoksa yasak mı olduğunu gösterir. Serbest enerji genellikle potansiyel enerji içerdiğinden mutlak değildir ve bu nedenle sıfır noktası seçimine bağlıdır. Bu nedenle yalnızca bağıl serbest enerji değerleri veya serbest enerjideki değişimler fiziksel olarak anlamlıdır.