İçeriğe atla

Tamamlayıcılık (fizik)

Fizikte, tamamlayıcılık Kopenhag yorumuyla yakından ilgili kuantum mekaniğinin temel bir ilkesidir. Bu; nesnelerin aynı zamanda doğru olarak ölçülemeyen tamamlayıcı özelliklere sahip olduğunu ifade etmektedir. Heisenberg belirsizlik ilkesi uyarınca, bir özellik ne kadar doğru ölçülürse, tamamlayıcı özelliği de o kadar az doğru ölçülür. Bundan başka, belirli bir olay tipinin (fenomen) tam olarak açıklanması, bir şekilde tamamlayıcı olan çeşitli olası bazların her birinde yapılan ölçümler ile başarıya ulaşabilir. Tamamlayıcılık ilkesi, kuantum mekaniğinin önde gelen kurucularından olan Niels Bohr tarafından formüle edilmiştir.

Tamamlayıcı özellikler ile ilgili örnekler:

  • Konum ve momentum
  • Farklı eksende dönme
  • Dalga ve parçacık
  • Bir alanın değeri ve değişimi (belli bir pozisyonda)

Konsept

Bohr prensipleri aşağıdaki gibi özetlemiştir:

... ancak uzak [kuantum fiziksel] fenomenler klasik fiziksel açıklamanın kapsamını

aşar, tüm delillerin tanımı klasik terimlerle ifade edilmelidir. Arguman öyle basit

ki, “deney” sözcüğüyle biz; ne öğrendiğimiz, ne yaptığımız ve nerede diğerlerine

anlattığımız konusunda atıfta bulunuruz. Bu nedenle, deneysel düzenlemelerin ve

gözlem sonuçlarının açıklaması klasik fiziğin terminolojisine uygun uygulamaya sahip

anlaşılabilir bir dille ifade edilmelidir.

Bu çok önemli nokta... olayın hangi koşullarda ortaya çıktığını tanımlamayı hedef

edinen ölçüm aletleri ile atomik nesnelerin davranış ve etkileşimi arasındaki herhangi

bir keskin bölünmenin imkansızlığını işaret eder... Sonuç olarak, farklı deneysel

koşullar altında elde edilen deliller, tek bir resimle anlaşılamaz, ancak objelerle ilgili

olası bilgileri anlamsız kılan fenomenlerin totalitesi (toplamı) açısından tamamlayıcı

olarak kabul edilmelidir.

Örneğin, fiziksel objelerin dalga boyutu ve parçacığı böylesi tamamlayıcı fenomenlerdir. Her iki kavram, parçacığın ve dalganın aynı zamanda bulunmasının imkânsız olduğu klasik mekaniklerden ödünç alınmıştır. Bu nedenle, belirli bir anda dalga ve parçacığın tam özelliklerinin ölçülmesi imkânsızdır. Bunun yanında, Bohr; bir ölçüm cihazı ile bağımsız içsel saptamanın özelliklerine sahip olduğu için kuantum mekaniği tarafından yönetilen nesneleri kabul etmenin mümkün olmadığını ifade eder. Ölçümün türü hangi özelliğin gösterildiği tayin eder. Ancak, tek ve çift yarık deneyi (single and double-slit experiment) ve diğer deneyler; dalga ve parçacığın bazı etkilerinin tek bir ölçümde ölçülebileceğini göstermektedir.

Doğası

Tamamlayıcılığın bir temel yönü, sadece bir fiziksel varlığın bazı ölçülebilir ve tanınır özellikleri için uygulanmaz, fakat daha da önemlisi, fiziksel dünyada mevcut özelliğin belirgin tezahürünün kısıtlanmasında da uygulanır. Fiziksel varlıkların tüm özellikleri, Bohr’un tamamlayıcı veya konjuge (birleşik) çiftler (Fourier dönüşüm çiftleri de denir) diye nitelendirdiği sadece çiftlerde bulunur. Fiziksel gerçeklik, bu tamamlayıcı çiftler arasında bulunan dengeler tarafından sınırlanan özelliklerin tezahürleri tarafından belirlenir ve tanımlanır. Örneğin, bir elektron; momentumun tezahüründe mevcut bulunan tamamlayıcı kaybın alışverişinde bile pozisyonunun daha büyük ve daha doğru olduğunu açıkça gösterebilmektedir. Bu durum, son derece hassas pozisyonun, tezahür eden momentumunun mümkün olmayan (örneğin, tezahür etmeyen veya ele geçirilmemiş) belirsizliğini veya üstü kapalı olmasını dikte edeceğinden dolayı (örneğin, açık) pozisyona sahip bir elektronda da sınırlamanın olduğunu ortaya koymaktadır. Özelliğin tezahürünün hassasiyetindeki nihai sınırlamalar Heisenberg belirsizlik ilkesi ve Planck birimleri tarafından ölçülür. Tamamlayıcılık ve Belirsizlik, fiziksel dünyadaki tüm özellikleri ve eylemler dolayısıyla bir dereceye kadar non-deterministik olduğunu belirlemektedir. Fizikçiler F.A.M. Frescura ve Basil Hiley fizikte tamamlayıcılık ilkesinin getirilmesinin nedenlerini şu şekilde özetlemektedir:

“Geleneksel görüşte, uzay-zaman içinde bir gerçekliğin var olduğuna ve bu

gerçekliğin tüm yönleriyle incelenebilen veya herhangi bir anda açık bir şekilde

ifade edilebilen belirlenmiş bir şey olduğuna inanılır. Soruna geleneksel bakışı

kuantum mekaniği diye adlandıran ve bunu işaret eden ilk kişi Bohr’dur. O’na

göre, belirsizlik ilkesini açıklama yöntemi olan 'eylemin kuantum bölünmezliği',

bir sistemin tüm yönlerinin aynı anda görülebileceğini ima etmekteydi.

Tertibatın bir başka tamamlayıcı özelliğinin farklı bir parçasıyla tezahürün

oluşması mümkün olmakla beraber böylesi bir durumda orijinal yapı tezahür

dışı (non-manifest) olduğundan; öyle ki, özgün nitelikler artık iyi belirlenmemiş

olduğundan, sadece belirli özelliklerin tertibatının belirli bir parçasını

kullanarak, diğerlerine rağmen tezahür oluşturulabilir. Bohr için bu durum,

tamamlayıcılık ilkesinin bir göstergesiydi. Bu ilkeyi Bohr, daha önceden diğer

fikri disiplinlerde, klasik fizik hariç, yoğun bir şekilde göründüğünü bilmekteydi

ve bunun evrensel bir ilke olarak uygulanmasını belirtmekteydi.

Bir sistem içinde tamamlayıcılık; ilgili kişinin, hangi koşullar altında özelliklerini ölçmeye teşebbüs ettiğini dikkate aldığında ortaya çıkar. Bohr’un da not ettiği üzere, tamamlayıcılık ilkesi atomik nesnelerin davranışı ve fenomenlerin ortaya çıktığı koşulları tanımlamayı amaç edinen ölçüm enstrümanlarının etkileşimi arasındaki herhangi bir keskin ayrılığın imkânsızlığını işaret etmektedir. Bohr’un orijinal metinlerinde de belirtildiği üzere, önemli olan, belirsizlik ilkesi ile ilgili açıklamadan kaynaklanan tamamlayıcılık ilkesinin ayırt edilmesidir. Fizikte tamamlayıcılık mevzusunu çevreleyen güncel konulardaki teknik bir tartışma için, örneğin, Bandyopadhyay (2000) bakınız. Burada bu tartışmanın bölümleri ile ilgili çizimleri göreceksiniz.

Ek hususlar

Konu üzerine yaptığı özgün konuşmasında, Bohr, aynen ışık hızının sınırlılığının uzay ve zaman (izafiyet) arasında keskin bölünmenin imkânsızlığı anlamına geldiği gibi eylemin kuantumundaki sınırlılığı da, etkileşim ve sistemin davranışı arasındaki keskin bölünmenin imkânsızlığının ölçüm aletleriyle ifade edildiğini işaret etmiştir. Bohr bu durumun, kuantum teorisindeki “durum”un konsepti ile ilgili bilinen sorunlara neden olduğunu belirtmiştir; kuantum teorisinin yarattığı epistemolojide, bu yeni durumun tamamlayıcılık kavramı ile sembolize edilmesi amaçlanmıştır. Bazıları bu durumu kuantum teorisinin biçimsel yönleri kadar önemli bir keşif olarak kabul ederken, bazıları da onu kuantum mekaniğine bir felsefi yardımcı olarak düşünmüştür. Sonraki örnekler, "Tamamlayıcılığın, quantal formalizmin üstüne dekorasyon olarak yerleştirilecek, Bohr tarafından icat edilmiş bir felsefi bir üstyapı olmadığını aksine, quantal açıklamanın temelini teşkil ettiğini” iddia eden Leon Rosenfeld’i kapsar. John Wheeler da, Bohr'un Tamamlayıcılık ilkesinin, kuantum fikrinin tam olarak anlaşılmasına yönelik olarak yaptığı elli yıllık araştırmasının özünü teşkil ettiğini ve bu yüzyılın en devrimci bilimsel konsepti olduğunu ifade etmiştir.

Deneyler

Laboratuvardaki dalga-parçacık tamamlayıcılığının özlü örneği çiftyarık (çift fant)’dır. Tamamlayıcı davranışın özünün şu soru teşkil etmektedir: Mevcut bilgilerin ortaya koyduğu şey" - evrenin bileşenlerinin içine aldığı-, “ çift yarıktan geçerken sinyal gelişim aşamalarını ortaya çıkaran şey ne?” Bilgi, dönen her partikülün "hangi yarığı” ortaya koyduğunu (bilinçli bir gözlemci tarafından ölçülmesi durumunda) ortaya çıkarsa, o zaman her bir parçacık diğer yarık ile çakışan hiçbir dalgayı ortaya koymaz. Bu, bir parçacık benzeri davranıştır. Fakat- her ne kadar iyi donanımlı olursa olsun bilinçli bir gözlemcinin olmamasından dolayı- her bir partikülün seyahat edebileceği yarığı saptayabilecek yarıkla ilgili bir bilginin mevcut olmaması durumunda, o zaman bir dalga olarak, her iki yarık boyunca seyahat ediyormuş gibi bizzat işaret partikülleri (zerrecikleri) kendi kendilerini aynı zamanda engelleyecektir. Englert Greenberger’in ikilik ilişkisine göre bu bir dalga benzeri davranıştır. Çünkü bir davranış gözlemlendiğinde, diğer davranış görülmez. Her iki davranış aynı zamanda gözlemlenebilir, fakat her biri, ancak tüm davranışları (ikilik ilişkisi ile belirlendiğinden) daha az tezahür eder şekilde. Tamamlayıcı davranışların bu süperpozisyonu, "hangi yarık" ile ilgili kısmi bir bilgi olduğunda var olur. İkilik ilişkisi ve tamamlayıcılığın bizzat kendisi ile ilgili bazı tartışmalar sürerken, tersi pozisyonu genel fizik tarafından kabul görmez.

Çeşitli nötron enterforemetre deneyleri, ikilik ve tamamlayıcılık kavramlarının inceliğini göstermektedir. Interferometreyi boydan boya geçerek, nötronun bir dalga gibi hareket ettiği görülmektedir. Ancak geçiş esnasında nötron yerçekimi ile karşı karşıya gelir. Nötron interferometresi dünyanın yerçekimi alanında dönmeye maruz kalırken, interferometrenin iki kolu arasında bir faz değişimi, interferometreden çıkan nötron dalgalarının yapıcı ve yıkıcı müdahalesindeki değişiklik eşliğinde gözlemlenebilir. Bazı yorumlar, müdahale etkisini anlamanın, tek bir nötronun aynı anda interferometre üzerinden her iki yolu aldığını kabullenmeyi gerektiğini iddia etmektedir; tek bir nötron, daha önce olduğu gibi "bir kerelik aynı anda iki yerde olacaktı". Bir nötron interferometresi boyunca iki yol arasındaki mesafe birbirinden 15 cm ile 5 cm uzaklığında olacağından dolayı, etkisi de pek mikroskobik seviyede olur. Bu durum, yarıkların (veya aynaların) rastgele birbirinden uzağa konulduğu ayna inferometre ve geleneksel çift-yarık deneylerine benzerlik göstermektedir. Bu nedenle, parazit ve kırınım deneylerinde, nötronlar, tekabül eden dalga boyunun fotonları (veya elektronları) ile aynı şekilde davranış ortaya koyarlar.

Tarih

Görünüşe göre Niels Bohr tamamlayıcılık ilkesini, 1927’nin Şubat ve Mart aylarında Norveç’e yaptığı kayak tatili esnasında iyice idrak etmişti. Bu esnada (daha henüz basıma verilmemiş olan) daha henüz keşfedilmiş belirsizlik ilkesi ile ilgili olarak Werner Heisenberg’den bir mektup aldı. Heisenberg’in belirsizlik ilkesi ile ilgili çalışmalarını basım amacıyla sunacağı tatilden döneceği o vakte kadar, Bohr belirsizlik ilkesinin, tamamlayıcılığın daha derin konseptinin tezahürü olduğuna Heisenberg’i ikna etti. Heisenberg yayımı öncesinde, belirsizlik ilkesi ile ilgili olarak yaptığı çalışmaya bir etkisi olur düşüncesiyle şu notu usulüne uygun bir şekilde ekler ve şöyle der:

Bohr, yaptığımız gözlemlerdeki belirsizliğin, süreksizliklerin oluşumundan

münhasıran ortaya çıkmadığına dikkatimi çekti ve bunun sebebini, doğrudan

bir yandan [partikulat] teorisine bir yandan da dalga teorisinde ortaya çıkan

oldukça farklı deneylere eşit geçerlilik şeklinde yorumlamadaki isteğimize

bağladı.

Bohr, halka açık bir ortamda, 16 Eylül 1927 tarihinde Como, İtalya'da düzenlenen Uluslararası Fizik Kongresi’nde verilen bir konferansta tamamlayıcılık ilkesini tanıttı. Bu konferansa, Einstein, Schrödinger ve Dirac hariç, o dönemin önde giden fizikçileri, de katılmıştı. Fakat, adı geçen bu üç kişi, bir ay sonra Bohr’un; Bürksel, Belçika’da Fifth Solvay Kongresinde prensipleri tekrar takdim ettiği konferansa katıldılar. Her iki konferansta verilen dersler basılıp yayınlandı. Müteakip yılda da Almanca olarak Naturwissenschaften’de, İngilizce olarak Nature’da tekrar yayınlandı. "Atomik Fizik epistemolojik Sorunları hakkında Einstein ile Tartışmalar" başlıklı 1949 yılında Bohr tarafından yazılmış bir makalede tamamlayıcılık kavramı hususunda yapılmış kesin tanımlama birçok kişi tarafından kabul görmektedir.

Tamamlayıcılıkta DDA ve Süreksiz Hareket

Dr Shan Gao; (sayfa konum 1785) Kuantum mekaniği ve Tamamlayıcılık da çift yarık deneyi hususunu açıklamak için, Shi ve Adlerin çalışmalarından ve DDA, DEM ve kuantum mekaniğinin denklemlerinden istifade etti. Düşüncenin nontechnical temeli, hareketin bloklarda, partiküller (ve/veya “ayrık zaman birimi”) diye tanımlanan bloklarla nasıl meydana geldiğini açıklamak için sürekli hareket fikrini ve denklemleri kullanarak, kapsamlı bir ayrıklaştıran lens kanalıyla elektronların veya fotonların (parçacıkların) dalga hareketlerine bakarak parçacık sorunlarını çözmektir. Benzer denklem hususları yaygın olarak (Adler’den sonra, 2002, adı geçen eserdeki referans noktaları) kabul edilmekle beraber, yarık deneyinde parçacıkların lokasyonu olarak onları genelleme düşüncesi hala teorik ve spekülatif konumdadır.

Notlar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Werner Heisenberg</span> Alman teorik fizikçi (1901–1976)

Karl Werner Heisenberg, Alman teorik fizikçi. Kendi ismiyle anılan Belirsizlik İlkesi'ni buldu. Atom yapısı bilgisine katkılarından dolayı 1932 yılında Nobel Fizik Ödülü'ne layık görüldü.

Belirsizlik ilkesi, Heisenberg belirsizlik ilkesi ya da Belirlenemezlik ilkesi olarak da bilinir.

Dalga-parçacık ikililiği teorisi tüm maddelerin yalnızca kütlesi olan bir parçacık değil aynı zamanda da enerji transferi yapan bir dalga olduğunu gösterir. Kuantum mekaniğinin temel konsepti, kuantum düzeyindeki objelerin davranışlarında ‘’parçaçık’’ ve ‘’dalga’’ gibi klasik konseptlerin yetersiz kalmasından dolayı bu teoriyi işaret eder. Standart kuantum yorumları bu paradoksu evrenin temel özelliği olarak açıklarken, alternatif yorumlar bu ikililiği gelişmekte olan, gözlemci üzerinde bulunan çeşitli sınırlamalardan dolayı kaynaklanan ikinci dereceden bir sonuç olarak açıklar. Bu yargı sıkça kullanılan, dalga-parçacık ikililiğinin tamamlayıcılık görüşüne hizmet ettiğini, birinin bu fenomeni bir veya başka bir yoldan görebileceğini ama ikisinin de aynı anda olamayacağını söyleyen Kopenhag yorumu ile açıklamayı hedefler.

<span class="mw-page-title-main">Pauli dışarlama ilkesi</span> Kuantum mekaniği prensibi: iki özdeş fermiyon aynı anda, aynı kuantum halinde bulunamazlar.

Pauli dışarlama ilkesi ya da Pauli dışlama ilkesi, iki ya da daha çok özdeş fermiyonun aynı kuantum durumda olamayacağını belirten bir kuantum mekaniği yasasıdır. Bu yasa, kuramsal fizikçi Wolfgang Pauli tarafından 1925 yılında bulunmuştur. İlk bulunuşunda yasa yalnızca elektronlar için geçerliyken, 1940 yılında Spin-istatistik teoreminin bulunmasıyla birlikte bütün fermiyonları kapsayacak biçimde genişletilmiştir.

<span class="mw-page-title-main">Bohr modeli</span> bir atom modeli

Bohr atom modeli, Niels Henrik Bohr tarafından 1913 yılında, Rutherford atom modelinden yararlanılarak öne sürülmüştür.

Kuantum kriptografisi, kriptografik görevleri gerçekleştirmek için kuantum mekaniği özelliklerinden yararlanma bilimidir. Kuantum kriptografinin en iyi bilinen örneği anahtar değişimi sorununa bilgi teorik açıdan güvenli olan bir çözüm sunan "kuantum anahtar dağıtımı"dır. Kuantum kriptografinin avantajı, yalnızca klasik iletişim kullanılarak imkansız olduğu kanıtlanan veya varsayılan çeşitli kriptografik görevlerin tamamlanmasına izin vermesidir. Örneğin, bir kuantum durumu içinde kodlanmış kopyalanması imkansız veridir. Eğer biri kodlanmış veriyi okumaya çalışırsa, kuantum durumu dalga fonksiyonu çökmesi nedeniyle değişecektir. Bu, kuantum anahtar dağıtımında (QKD) gizli dinlemeyi tespit etmek için kullanılabilir.

<span class="mw-page-title-main">Fizik felsefesi</span>

Fizik felsefesi, klasik ve modern fiziğin içerisindeki teori ve yorumları inceleyen bir bilim felsefesi dalıdır. Fizik teorileri ve yorumlarından yola çıkarak sorduğu sorularla çeşitli cevaplara ulaşmayı amaçlamaktadır. Uzay ve zaman felsefesi, kuantum mekaniği felsefesi, termal ve istatistiksel felsefe gibi alt dallara ayrılmaktadır.

Her şeyin kuramı (HŞK), bilinen tüm fizik fenomenlerini bağlayan, onları tümüyle açıklayan ve yürütülen herhangi bir deneyin sonucunu prensipte tahmin edebilen kuramsal fizikte farazi bir kuramdır. Kuram; kuvvetli etkileşim, elektromanyetik etkileşim, zayıf etkileşim ve kütleçekim etkileşimi olmak üzere dört temel etkileşimden hareket ederek bu etkileşimler için gerekli olan değiş tokuş bozonlarını da her bir etkileşim türü için farklı özellikleri ile söz konusu sınıflandırmaya dahil eden standart modelin aslında ortak bir çatı altında toplanabileceği fikrinden yola çıkmıştır. Elektromanyetik ve zayıf etkileşimin Abdus Salam, Sheldon Glashow ve Steven Weinberg tarafından kısmen birleştirilmesi bazı umutlar doğurduysa da, aradan geçen zamana rağmen deneyleri ve kuramları tatmin edecek nitelikte yeni birleştirimler henüz sağlanamamıştır.

<span class="mw-page-title-main">Kuantum mekaniği</span> atom altı seviyede çalışmalar yapan bilim dalı

Kuantum mekaniği veya kuantum fiziği, atom altı parçacıkları inceleyen bir temel fizik dalıdır. Nicem mekaniği veya dalga mekaniği adlarıyla da anılır. Kuantum mekaniği, moleküllerin, atomların ve bunları meydana getiren elektron, proton, nötron, kuark, gluon gibi parçacıkların özelliklerini açıklamaya çalışır. Çalışma alanı, parçacıkların birbirleriyle ve ışık, x ışını, gama ışını gibi elektromanyetik ışınımlarla olan etkileşimlerini de kapsar.

<span class="mw-page-title-main">Kuantum alan teorisi</span> hareketli parçacık sistemlerinin kuantizasyonuyla ilgilenen parçacık mekaniğiyle benzer olarak, alanların hareketli sistemlerine parçacık mekaniğinin uygulamasıdır

Kuantum Alan Teorisi (METATEORİ); Klasik Birleşik Alan (KAT) Teorilerini, Özel Görekliliği (SRT), Kuantum mekaniği (KM) teorilerini tek bir teorik çerçeve altında toplayan bir üst teoridir.

<span class="mw-page-title-main">Kopenhag yorumu</span> fizikçi Niels Bohrun oluşturduğu kuantum mekaniği ile ilgili görüşler ve ilkeler dizisi

Kopenhag yorumu, genel olarak fizikçi Niels Bohr'un oluşturduğu kuantum mekaniği ile ilgili görüşler ve ilkeler dizisi. Makro ve mikro durumların ayrı fiziksel ilkelerle inceleneceğini belirtir. Fizikte gözlemin rolünü öne çıkarmasıyla bir devrim niteliğindedir.

Kuantum mekaniğinin farklı yorumlarından Von Neumann yorumuna göre, dalga fonksiyonunun çökmesi için fizik dışından yeni bir sürecin dünyaya girmesi gerekir. Buna göre dünya, herhangi bir bilinçli zihnin dünyanın bir bölümünü her zamanki belirsiz durumundan gerçek var olma durumuna yükseltmeye karar vermesi dışında, her yerde saf olasılıklar durumunda kalır.

<span class="mw-page-title-main">Çift yarık deneyi</span>

Young deneyi olarak da bilinen çift-yarık deneyi, ışığın dalga özelliği sergilediğini gösterir. Fotoelektrik etkisi ışığın dalga özelliğinin yanı sıra parçacık özelliği de sergilediğini gösterir. Deneyin basit versiyonunda lazer ışını gibi bağdaşık bir ışık kaynağı, iki paralel yarık açılmış ince bir levhayı aydınlatır ve yarıktan geçen ışık levhanın arkasındaki bir ekranda gözlemlenir. Işığın dalga doğası ışık dalgalarının iki yarıktan da geçerek girişim yapmasını ve ekranda aydınlık ile karanlık bantlar oluşturmasını sağlar ki bu sonuç ışık tamamen parçacıklı yapıda olsa beklenemez. Fakat, parçacıklardan veya fotonlardan oluşuyormuş gibi, ekranda her zaman ışığın soğurulduğu görülür. Bu durum dalga-parçacık ikiliği olarak bilinen prensibi ortaya koyar.

<span class="mw-page-title-main">EPR paradoksu</span> kuantum mekaniğinin Kopenhag yorumuna karşı erken ve etkili bir eleştiri

EPR paradoksu, kuantum mekaniğinin Kopenhag yorumuna karşı erken ve etkili bir eleştiridir. Albert Einstein ve arkadaşları Boris Podolsky ve Nathan Rosen kuantum mekaniğinin daha önce fark edilmemiş fakat belli sonuçlara sahip olan kabul edilmiş denklemlendirimini meydana çıkaran bir düşünce deneyi hazırladılar, ancak zamanla bu denklemlendirimler mantıksız göründü. Açıklanan senaryo kuantum dolanıklık olarak bilinen bir olay içeriyordu.

Kuantum mekaniği madde ve atomların ve atom içindeki parçacıklar ölçeğinde enerji ile etkileşimlerinin davranışını açıklayan bilimsel ilkeler organıdır: Bu makaleye teknik olmayan konuların tanıtımında ulaşabilirsiniz.

Kuantum mekaniğinin tarihi modern fizik tarihinin önemli bir parçasıdır. Kuantum kimyası tarihi ile iç içe olan kuantum mekaniği tarihi özünde birkaç farklı bilimsel keşif ile başlar; 1838’de Michael Faraday tarafından elektron demetlerinin keşfi, Gustav Kirchhoff tarafından 1859-60 kışı siyah cisim ışıması problemi beyanı, Ludwig Boltzmann’ın 1877 yılındaki fiziksel bir sistemin enerji seviyelerinin ayrıklardan olabileceği önerisi, 1887 yılında Heinrich Hertz’in fotoelektrik etkiyi keşfetmesi ve Max Planck’ın 1900 yılında ileri sürdüğü, herhangi bir enerji yayan atomik sisteminin teorik olarak birkaç farklı “enerji elementi” ε (epsilon) ne bölünebilmesi, bu enerji elementlerinden her birinin frekansına ν orantılı olması ve ayrı ayrı enerji üretebilmesi hipotezi, aşağıdaki formülle gösterilmiştir;

<span class="mw-page-title-main">Bohr-Einstein tartışmaları</span> Bohr-Einsitein arası diyaloglar

Bohr–Einstein tartışmaları, kuantum mekaniği hakkında Albert Einstein ile Niels Bohr arasında süregelen tartışmadır.

Wheeler'ın gecikmiş seçim deneyi aslında John Archibal Wheeler tarafından önerilen kuantum fiziğinin içinde önde gelen 1978 ve 1984 yılları arasında oluşturulmuş düşünce üzerine dayalı bir deneydir. Bu tür deneyler ışığın çift yarık deneyinde deneysel bir aparat olarak yolculuk yapacağı ve kendini düzenleyeceği, kendisi için en doğru karardan yola çıkarak mı yoksa ışığın belli olmayan bir halde olacağını mı yahut dalga mı parçacık mı olduğunu anlama girişimlerinde bulunmak için düzenlenmiştir.

Klasik Newton Fiziği küçük ölçek için kuantum mekaniği, büyük ölçek için görelilik ile yer değiştirdi çünkü insanların düşünmeye günlük olaylardaki algıları üzerinden devam etmeleri klasik fiziğin yeni bir felsefi yorumlamaya ihtiyacını doğuruyordu. Klasik mekanik gözlem alanında iyi iş çıkarıyordu ama atomik ölçekte kusurlu tahminler yapıyordu. Kuantum mekaniği ve görelilik objektifinden bakıldığında, klasik mekaniğin kanıtlanmamış fikirlerin de dahil olduğu günlük deneyimlerimizden geldiğini görebiliyoruz. Örneğin, bütün gözlemciler tarafından paylaşılan bir tek mutlak zamanın var olduğu fikri yaygın olarak benimsenmiştir. Bir diğer fikir ise elektronların çekirdeğin etrafında belli bir dairesel yörüngesi olan minyatür gezegenlere benzeyen ayrık oluşumlar olduğuydu.

Matris mekaniği, 1925 yılında Werner Heisenberg, Max Born ve Pascual Jordan tarafından oluşturulan kuantum mekaniğinin bir formülasyonudur.