İçeriğe atla

Ruffini kuralı

Matematikte, Ruffini'nin kuralı, bir polinomun Öklid bölünmesinin x – r biçimindeki bir denklem ile kağıt kalemle hesaplanması için geliştirilmiş bir yöntemdir. 1804 yılında Paolo Ruffini tarafından tanımlanmıştır.[1] Kural, bölenin doğrusal bir bölen olduğu özel bir sentetik bölme durumudur.

Algoritma

Kural, polinomu bölmek için bir yöntem belirler.

denkleme göre

bölüm polinomunu elde etmek için

Algoritma aslında P (x)'in Q (x)'ye uzun bölümüdür .

P (x) 'i Q (x) ile bölmek için:

  1. P (x) katsayılarını alın ve sırayla yazın. Ardından, sol alt köşeye satırın hemen üzerine r yazın:
  2. En soldaki katsayısı (a n) satırın hemen altına geçirin.
  3. Satırın altındaki en sağdaki sayıyı r ile çarpın ve satırın üzerine ve sağa bir konum yazın.
  4. Aynı sütuna yeni yerleştirilmiş iki değeri ekleyin.
  5. Hiçbir sayı kalmayana kadar 3. ve 4. adımları tekrarlayın.

b değerleri, derecesi P (x) değerinden bir eksik olan sonuç (R (x)) polinomunun katsayılarıdır. Elde edilen son değer, s, kalandır. Polinom kalan teoremi, kalanın, r'deki polinomun değeri olan P (r)'ye eşit olduğunu ileri sürer.

Örnek

Ruffini kuralı kullanılarak yapılan bir polinom bölünmesi örneği.

Polinomu tamamen çarpanlara ayırmak mümkün olduğu için, son kökün -2 olduğu kesindir (önceki prosedür, son bölümü 1 ile aynı sonucu verirdi).

P (x), Ruffini kuralı kullanılarak Q (x)'e bölünecektir. Asıl sorun, Q (x)'in x - r biçiminde bir denklem değil, daha çok x + r olmasıdır. Q (x) şu şekilde yeniden yazılmalıdır:

Şimdi algoritma uygulanır:

  1. Katsayıları ve r ‘yi yazın. P (x) x için bir katsayı içermediğinden 0 yazılır:
  |   2   3   0 | -4
  |          |        
-1 |          |        
----|--------------------|-------
  |          |        
  |          |        
  1. İlk katsayıyı aşağı yazın:
  |   2   3   0 | -4
  |          |        
-1 |          |        
----|--------------------|-------
  |   2       |        
  |          |        
  1. Son elde edilen değeri r ile çarpın:
  |   2   3   0 | -4
  |          |        
-1 |     -2    |        
----|--------------------|-------
  |   2       |        
  |          |        
  1. Değerleri ekleyin:
  |   2   3   0 | -4
  |          |
-1 |     -2    |
----|--------------------|-------
  |   2   1    |
  |          |        
  1. Tamamlanana kadar 3. ve 4. adımları tekrarlayın:
  |   2   3   0  | -4
  |           |
-1 |     -2  -1  | 1
----|----------------------------
  |   2   1  -1  | -3
  |{result coefficients}|{remainder}

Yani, orijinal sayı = bölen × bölüm + kalan ise, o zaman

, nerede
ve

Kullanıldığı yerler

Ruffini kuralının birçok pratik uygulaması vardır ve bunların çoğu basit bölmeye (aşağıda gösterildiği gibi) veya aşağıda daha da verilen ortak uzantılara dayanır.

Polinom kök bulma

Rasyonel kök teoremi, bir polinom için f(x) = anxn + an−1xn−1 + ⋯ + a1x + a0 tüm katsayıları (a n ila a 0) tamsayı olan, gerçek rasyonel kökler her zaman p / q biçimindedir; burada p, 0'ın tam sayı bölenidir ve q , a n'nin tamsayı bölenidir. Böylece polinomumuz ise

olası rasyonel kökler , 0'ın (−2) tüm tam sayı bölenleridir:

(Örnek basittir çünkü polinom moniktir (a n = 1). Monik olmayan polinomlar için, olası kökler kümesi bazı kesirler içerecek, ancak bunların yalnızca sonlu bir sayısı olacaktır, çünkü a n ve a 0'ın her birinde yalnızca sonlu sayıda tam sayı bölen bulunur.) Her durumda, monik polinomlar için, her rasyonel kök bir tam sayıdır ve bu nedenle her tam sayı kökü, sabit terimin (a 0) yalnızca bir bölenidir. Monik olmayan polinomlar için doğru kalmanın: tamsayı katsayıları olan herhangi bir polinomun tamsayı köklerini bulmak için sabit terimin bölenlerini kontrol etmenin yeterli olduğu gösterilebilir .

Bu nedenle, r olası köklerin her birine eşit olarak ayarlandığında, polinom (x - r) ile bölünür. Elde edilen bölümün kalanı 0 ise, r polinomun köküdür.

Aşağıdaki üç yöntemden herhangi biri seçilebilir, çünkü yalnızca ikinci yöntem ve üçüncü yöntem (bir çarpanlara ayırma elde etmek için Ruffini kuralını uygularken) belirli bir kökün tekrarlanıp tekrarlanmadığını keşfedebilir, istisna dışında hepsi aynı sonuçları verir. (Her iki yöntem de irrasyonel veya karmaşık kökleri keşfedemez.)

Yöntem 1

Bölme P (x) binom (x - her olası kök). Kalan 0 ise, seçilen sayı bir köktür (ve tersi):

bu | +1 +2 -1 -2 | +1 +2 -1 -2
  | |
 +1 | +1 +3 +2 -1 | -1 -1 +2
----|--------------------------- ----|------------ ---------------
  | +1 +3 +2 0 | +1 +1 -2 0

  | +1 +2 -1 -2 | +1 +2 -1 -2
  | |
 +2 | +2 +8 +14 -2 | -2 0 +2
----|--------------------------- ----|------------ ---------------
  | +1 +4 +7 +12 | +1 0 -1 0

Örnekte, P (x) üçüncü dereceden bir polinomdur. Cebirin temel teoremine göre, üçten fazla karmaşık çözümü olamaz. Bu nedenle, polinom aşağıdaki gibi çarpanlarına ayrılır:

Yöntem 2

Geçerli bir kök bulunana kadar Yöntem 1'deki gibi başlayın. Ardından, işlemi diğer olası köklerle yeniden başlatmak yerine, yalnızca bir katsayı kalana kadar şu anda bulunan geçerli kök üzerindeki Ruffini'nin sonucuna karşı olası kökleri test etmeye devam edin (köklerin tekrarlanabileceğini unutmayın: takılırsanız, her birini deneyin). iki kez geçerli kök):

| +1 +2 -1 -2 | +1 +2 -1 -2
  | |
 -1 | -1 -1 +2 -1 | -1 -1 +2
----|-------------------------- ----|------------- --------------
  | +1 +1 -2 | 0 | +1 +1 -2 | 0
  | |
 +2 | +2 +6 +1 | +1 +2
------------------------- -------------------------
  | +1 +3 |+4 | +1 +2 | 0
                          |
                        -2 | -2
                        -------------------
                          | +1 | 0
Yöntem 3
  • Rasyonel kök teoremine göre polinomun olası tamsayı veya rasyonel köklerinin kümesini belirleyin.
  • Her olası kök r için, P (x)/(xr) bölümünü gerçekleştirmek yerine, bölümün geri kalanının P (r) olduğunu belirten polinom kalan teoremini uygulayın, polinom x = r için değerlendirilir. Böylece, kümemizdeki her r için, r bir polinomun kökü ise ancak ve ancak P (r)=0 ise bu, bir polinomun tamsayı ve rasyonel köklerini bulmanın herhangi bir bölme veya Ruffini kuralının uygulanmadığını gösterir. Ancak, geçerli bir kök bulunduğunda, onu r 1 olarak adlandırın: Q (x) = P (x) / (xr 1 ) belirlemek için Ruffini kuralı uygulanabilir. Bu, polinomun P (x) = (xr 1 ) · Q ( x) şeklinde kısmi çarpanlarına ayrılmasına izin verir. Daha önce belirlenmiş, henüz kontrol edilmemiş olası kökler arasında bulunabilir (P (x) 'in kökü olmadığı önceden belirlenmiş herhangi bir değer de Q (x) kökü değildir; daha resmi olarak, P (r)≠ 0 → Q (r)≠0). Böylece P (r) yerine Q (r) değerlendirmeye ve (başka bir kök bulabildiğiniz sürece r 2 ) Q (r) 'yi (xr 2 ) ile bölerek devam edebilirsiniz. Yalnızca kökleri arasanız bile, bu, çarpanlara ayırma ilerledikçe art arda daha küçük dereceli polinomları değerlendirmenize olanak tanır. Çoğu zaman olduğu gibi, n dereceli bir polinomu da çarpanlara ayırıyorsanız:
  • p = n rasyonel çözümler bulduysanız, sonunda tam bir çarpanlara ayırma (aşağıya bakınız) ile p = n lineer faktörlere ulaşırsınız;
  • p < n rasyonel çözümler bulduysanız, sonunda p lineer faktörlere kısmi çarpanlara ayırma (aşağıya bakın) ve np derecesinin lineer olmayan başka bir faktörüne ulaşırsınız, bu da sırasıyla irrasyonel veya karmaşık köklere sahip olabilir.
Örnekler
Ruffini Kuralını uygulamadan kök bulma
P(x) = x3 + 2x2x – 2

Olası kökler = {1, –1, 2, -2}

  • P (1) = 0 → x 1 = 1
  • P (-1) = 0 → x 2 = -1
  • P (2) = 12 → 2 polinomun kökü değil

ve (x3 + 2x2x − 2) / (x − 2) 'nin kalanı 12'dir

  • P (−2) = 0 → x 3 = -2
Ruffini Kuralını uygulayarak kökleri bulma ve (tam) bir çarpanlara ayırma
P(x) = x3 + 2x2x − 2

Olası kökler = {1, -1, 2, -2}

  • P (1) = 0 → x 1 = 1

Ardından, Ruffini Kuralını uygulayarak:

(x3 + 2x2x − 2) / (x − 1) = x2 + 3x + 2
x3 + 2x2x − 2 = (x − 1)(x2 + 3x + 2)

Burada, r 1 =−1 ve Q(x) = x2 + 3x + 2

  • Q (-1) = 0 → x 2 = -1

Yine, Ruffini Kuralını uygulayarak:

(x2 + 3x + 2) / (x + 1) = x + 2
x3 + 2x2x − 2 = (x − 1)(x2 + 3x + 2) = (x − 1)(x + 1)(x + 2)

İzin ver

Polinomu çarpanlarına ayırma

Belirli bir polinomun tüm gerçek rasyonel köklerini bulmak için yukarıdaki " p / q " sonucunu (veya başka herhangi bir yolu) kullandıktan sonra, bu kökleri kullanarak o polinomu kısmen çarpanlara ayırmak için önemsiz bir adımdan başka bir şey değildir. İyi bilindiği gibi, belirli bir polinomu bölen her lineer faktör (x - r), bir r köküne karşılık gelir ve bunun tersi de geçerlidir .

Sonuç olaraj

 bizim polinomumuz; ve
bulunan kökler, o zaman sonucu düşünün

Cebirin temel teoremine göre, eğer P (x)'in tüm kökleri rasyonel ise, R (x) P (x)'e eşit olmalıdır. Ancak, yöntem yalnızca rasyonel kökleri bulduğu için, R (x)'in P (x)'e eşit olmaması çok olasıdır; P (x)'in R'de olmayan bazı irrasyonel veya karmaşık kökleri olması çok muhtemeldir. Yani sonuç olarak

polinom uzun bölme kullanılarak hesaplanabilir.

S (x) = 1 ise R (x) = P (x) bilinir ve işlem yapılır. Aksi takdirde, S (x) 'in kendisi, gerçek rasyonel kökleri olmayan P (x)'in başka bir çarpanı olan bir polinom olacaktır. Bu nedenle, aşağıdaki denklemin sağ tarafını tam olarak yazın:

S (x) = 1 ise, buna P (x) bölü Q'nun (rasyoneller) tam bir çarpanlarına ayırma denilebilir . Aksi takdirde, P (x) bölü Q'nun yalnızca kısmi bir çarpanlarına ayırması vardır; bu, rasyoneller üzerinde daha fazla faktörlenebilir olabilir veya olmayabilir, ancak gerçekler üzerinde veya en kötü ihtimalle karmaşık düzlem üzerinde kesinlikle daha fazla faktörlenebilir olacaktır. (P (x) bölü Q'nun "tam çarpanlara ayrılmasının", rasyonel katsayılara sahip polinomların bir ürünü olarak bir çarpanlara ayırma anlamına geldiğine dikkat edin, öyle ki her bir faktör Q üzerinde indirgenemez, " Q'ya indirgenemez" yanıtı, faktörün şu şekilde yazılamayacağı anlamına gelir. rasyonel katsayıları ve daha küçük dereceli iki sabit olmayan polinomun ürünü.)

Örnek 1: kalan yok

Belirli bir polinomu C üzerinde tam olarak çarpanlara ayırmak için, karmaşık sayıların tüm köklerinin bilinmesi gerekir (ve bu, irrasyonel ve/veya karmaşık sayıları içerebilir). Örneğin, yukarıdaki polinomu düşünün:

Yukarıda açıklanan yöntemleri kullanarak, P (x)'in rasyonel kökleri:

O halde, (x - her kök) çarpımı

Ve P (x)/ R (x):

Dolayısıyla çarpanlara ayrılmış polinom P (x) = R (x) · 1 = R (x):

Örnek 2: kalan ile

Ancak bu, C üzerinde tam olarak çarpanlara ayrılmamıştır. Bir polinomun çarpanlara ayrılması, lineer faktörlerin çarpımıyla sonuçlanacaksa, ikinci dereceden faktörle ilgilenilmelidir:

Yukarıda açıklanan yöntemleri kullanarak, P (x)'in rasyonel kökleri:

O halde, (x - her kök) çarpımı

Ve P (x)/ R (x)

Olarak , çarpanlara ayrılmış polinom P (x) = R (x) · S (x):

Karmaşık sayılar üzerinde çarpanlarına ayırma

Rasyonel köklerini çıkarmak ve çarpanlarına ayırmak şu sonuçları verir:

En kolay yol, ikinci dereceden formül kullanmaktır.

ve çözümler

Yani C bölü tamamen çarpanlarına ayrılmış polinom şöyle olacaktır:

Ancak her durumda işlerin bu kadar kolay olması beklenemez; dördüncü dereceden polinomlar için ikinci dereceden formülün sürekliliği çok dolambaçlıdır ve beşinci dereceden veya daha yüksek polinomlar için böyle bir süreklilik yoktur. Bunun neden böyle olduğuna dair teorik bir açıklama için Galois teorisine ve polinomların köklerine sayısal olarak yaklaşmanın yolları için sayısal analize bakın.

Geçerlilikler

Bu, belirli bir polinomun köklerini arıyor olabilir, S(x) için karmaşık yüksek dereceli bir polinom elde edilir; bu, polinom x 5 − 3 x 4 için olduğu gibi irrasyonel veya karmaşık faktörler göz önüne alınmadan önce bile rasyoneller üzerinde daha fazla çarpanlara ayrılabilen bir polinom elde edilir. + 3 x 3 − 9 x 2 + 2 x − 6. Ruffini'nin yöntemini kullanarak, sadece bir kök bulunur (x = 3), onu P (x) = (x 4 + 3 x 2 + 2)(x − 3) olarak çarpanlarına ayırır.

Yukarıda açıklandığı gibi, belirtilen atama " C üzerinden indirgenemezleri çarpanlarına ayırmak" ise, deltayı incelemek ve irrasyonel ve/veya karmaşık köklerini aramak için bir yol bulmak gereklidir. Ancak atama " Q üzerinden indirgenemezlerin çarpanı" olsaydı, bunun zaten yapılmış olduğu düşünülebilir, ancak durumun böyle olmayabileceğini anlamak önemlidir.

Bu durumda, delta, iki ikinci dereceden (x 2 + 1)(x 2 + 2) çarpımı olarak çarpanlara ayrılabilir. Sonunda, rasyoneller (ve bu örnekte gerçekler) üzerinde indirgenemezler ve bu da yöntemi sonuçlandırıyor; P (x) = (x 2 + 1)(x 2 + 2)(x − 3). Bu durumda, quartic denklemi bir biquadratik denklem olarak ele alarak çarpanlara ayırmak kolaydır; ancak daha yüksek dereceli bir polinomun bu tür faktörlerini bulmak çok zor olabilir.

Tarih

Yöntem, İtalyan Bilim Derneği (Kırk) tarafından düzenlenen bir yarışmaya katılan Paolo Ruffini tarafından icat edildi. Cevaplanması gereken soru, herhangi bir polinomun köklerini bulma yöntemiydi. Beş başvuru alındı. 1804'te Ruffini's birincilik ödülü aldı ve yöntemi yayınlandı. Ruffini, yönteminin iyileştirmelerini 1807 ve 1813'te yayınladı.

Horner'ın yöntemi 1819'da yayınlandı ve 1845'te rafine bir versiyonu yayınlandı.

Ayrıca bakınız

Kaynakça

  1. ^ Cajori (1911). "Horner's method of approximation anticipated by Ruffini" (PDF). Bulletin of the American Mathematical Society. 17 (8): 389-444. doi:10.1090/s0002-9904-1911-02072-9. 12 Aralık 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 14 Şubat 2022. 

Dış bağlantılar

  • Weisstein, Eric W. "Ruffini's rule". MathWorld.
  • Wikimedia Commons'ta Ruffini's rule ile ilgili çoklu ortam belgeleri bulunur

İlgili Araştırma Makaleleri

Matematikte reel sayılar kümesi, Fransızca réel “gerçek” den gelmektedir. Oranlı sayılar kümesinin evrim sürecinden elde edilen bir varsayım kombinasyonudur. Reel sayılar kümesi sembolüyle gösterilir.

<span class="mw-page-title-main">Aritmetiğin temel teoremi</span>

Matematik'te aritmetiğin temel teoremi, aynı zamanda benzersiz çarpanlara ayırma teoremi ve asal çarpanlara ayırma teoremi olarak da adlandırılır, şunu belirtir: 1'den büyük her tamsayı, benzersiz bir şekilde asal sayıların üslerinin çarpımı olarak gösterilebilir.

Matematikte cebirin temel teoremi karmaşık değişkenli polinomların köklerinin varlığıyla ilgili temel bir sonuçtur. D'Alembert-Gauss teoremi olarak da anılmaktadır.

<span class="mw-page-title-main">Rasyonel sayılar</span>

Rasyonel sayılar, iki tam sayı arasındaki oranı temsil eden, bir pay p ve sıfırdan farklı bir payda q olmak üzere, bir bölme işlemi veya kesir formunda ifade edilebilen sayıları tanımlar. Örneğin, rasyonel bir sayı olarak kabul edilir, bu kapsamda her tam sayı da rasyonel sayılar kategorisindedir. Rasyonel sayılar kümesi, çoğunlukla kalın harf biçimindeki Q veya karatahta vurgusu kullanılarak şeklinde ifade edilir.

<span class="mw-page-title-main">Polinom</span> değişkenlerin çarpımlarının toplamı, değişkenlerin gücü ve katsayılar

Matematikte, bir polinom belirli sayıda bağımsız değişken ve sabit sayıdan oluşan bir ifadedir. Polinom kendi içinde toplama, çıkarma, çarpma ve negatif olmayan sayının üssünü alma işlemlerini kullanır. Örnek olarak tek bilinmeyenli bir polinom olan x2 − 4x + 7, ikinci dereceden oluşan bir polinomdur. Diğer bir örnek olarak, x2 − 4/x + 7x3/2 bir polinom değildir, çünkü polinomlarda terimlerin derecelerinin doğal sayı olma zorunluluğu vardır 2. terimde x′i ele alan bir bölme işlemi x'in derecesini negatif yapmaktadır ve 3. terim doğal sayı olmayan bir derece içermektedir (3/2).

<span class="mw-page-title-main">Üs</span> matematik terimi

Üs, bazen kuvvet, b taban, n üs veya kuvvet olmak üzere, bn olarak gösterilen ve "b üssü n", "b üzeri n" veya "b'nin n'inci kuvveti" olarak telaffuz edilen matematiksel işlem. Eğer n pozitif bir tam sayıysa, tabanın tekrarlanan çarpımına karşılık gelir:

En küçük kareler yöntemi, birbirine bağlı olarak değişen iki fiziksel büyüklük arasındaki matematiksel bağlantıyı, mümkün olduğunca gerçeğe uygun bir denklem olarak yazmak için kullanılan, standart bir regresyon yöntemidir. Bir başka deyişle bu yöntem, ölçüm sonucu elde edilmiş veri noktalarına "mümkün olduğu kadar yakın" geçecek bir fonksiyon eğrisi bulmaya yarar. Gauss-Markov Teoremi'ne göre en küçük kareler yöntemi, regresyon için optimal yöntemdir.

Birinci dereceden bir bilinmeyenli denklemler; a sıfırdan farklı, b ise herhangi bir gerçel veya karmaşık sayı olmak üzere,

<span class="mw-page-title-main">Diskriminant</span>

Diskriminant matematik biliminde bir cebirsel kavramdır. Gerçel katsayılı ikinci derece polinom denklemlerin çözümü için kullanılır. İkinci dereceden büyük herhangi bir polinomun köklerinin bulunması için de bu kavram, köklerin toplamı için gereken ifadenin ve köklerin çarpımı için gereken ifadenin bulunması suretiyle genişletilmiştir. Bir polinom için çoklu köklerin varlığı veya yokluğu için gereken koşul da diskriminantın varlığı ve yokluğu ile bulunabilmektedir.

<span class="mw-page-title-main">Cebirsel sayılar</span>

Cebirsel sayılar, rasyonel katsayıları olan tek değişkenli sıfırdan farklı bir polinomun kökü olarak ifade edilebilen sayılardır. Mesela, altın oran, , cebirsel bir sayı örneğidir çünkü x2x − 1 polinomunun bir köküdür. Bu durumda, söz konusu polinomun değerinin sıfıra eşitlendiği x değeridir. Diğer bir örnek olarak, biçimindeki karmaşık sayı, x4 + 4 polinomunun bir kökü olduğundan dolayı cebirsel sayı olarak kabul edilir.

Cebirde polinom bölme, bir polinomu, eşit ya da daha düşük dereceli bir polinoma bölme algoritmasıdır. Uzun bölme olarak adlandırılan aritmetik yöntemin genellemesi olan algoritma, karmaşık bir bölme işlemini basite indirgediğinden elle yapılabilmektedir.

Matematikte, Descartes'ın İşaret Kuralı, ilk olarak René Descartes tarafından La Géométrie adlı çalışmasında tanımlanmıştır. Bu teknik ile tek değişkenli bir polinonum, maksimum pozitif ve maksimum negatif köklerinin sayısı, ilave olarak karmaşık ve reel köklerinin sayısı, denklemin kökleri bulunmadan, işaret kuralı ile tespit edilebilir.

Rabin şifreleme sistemi, Rabin kriptoloji veya Rabin kriptosistemi, güvenliği RSA'daki gibi tam sayı çarpanlarına ayırmanın zorluğu üzerine kurgulanmış olan asimetrik bir kriptografik tekniktir. Bununla birlikte, Rabin kriptosisteminin avantajı, saldırgan tam sayıları verimli bir şekilde çarpanlarına ayıramadığı sürece, seçilmiş bir düz metin saldırısına karşı hesaplama açısından güvenli olduğu matematiksel olarak kanıtlanmıştır, oysa RSA için bilinen böyle bir kanıt yoktur. Rabin fonksiyonunun her çıktısının dört olası girdiden herhangi biri tarafından üretilebilmesi dezavantajı; her çıktı bir şifreli metinse, olası dört girdiden hangisinin gerçek düz metin olduğunu belirlemek için şifre çözmede ekstra karmaşıklık gerekir.

<span class="mw-page-title-main">Çarpanlara ayırma</span>

Çarpanlara ayırma, bir polinomun, tam sayının ya da matrisin kendisini oluşturan bileşenlerin çarpımı şeklinde yazılmasıdır. Örneğin 15 sayısı 3 ve 5 asal sayılarının çarpımı şeklinde yazılabilir: 3 × 5 ya da x2 − 4 polinomu (x − 2)(x + 2) şeklinde yazılabilir.

Matematiksel analizde Legendre fonksiyonları, aşağıdaki Legendre diferansiyel denkleminin çözümleridir.

 ;
<span class="mw-page-title-main">Bézout teoremi</span> aciklama

Bézout teoremi, cebirsel geometride n değişkenli n polinomun ortak sıfırlarının sayısı ile ilgili bir ifadedir. Orijinal biçiminde teorem, genel olarak ortak sıfırların sayısının, polinomların derecelerinin çarpımına eşit olduğunu belirtir. Adını Fransız matematikçi Étienne Bézout'dan almıştır.

<span class="mw-page-title-main">Matematikte simetri</span> matematikte simetri kavramı

Simetri yalnızca geometride değil, matematiğin diğer dallarında da ortaya çıkar. Simetri bir tür değişmezliktir: matematiksel bir nesnenin bir dizi işlem veya dönüşüm altında değişmeden kaldığı özelliktir.

<span class="mw-page-title-main">Hermit polinomu</span>

Hermit polinomları, 1810'da Pierre-Simon Laplace tarafından tanımlanmış, ancak pek tanınmayan bir biçimde 1859'da Pafnuty Chebyshev tarafından ayrıntılı olarak incelenmiştir. Chebyshev'in çalışması gözden kaçmış ve daha sonra 1864'te polinomlar üzerine yazan ve onları yeni olarak tanımlayan Charles Hermite'nin adıyla anılmışlardır. Sonuç olarak yeni değillerdi, ancak Hermite 1865'teki yayınlarında çok boyutlu polinomları tanımlayan ilk kişi olmuştur.

<span class="mw-page-title-main">Kuadratik formül</span>

Temel cebirde, kuadratik formül, bir ikinci dereceden denklemin köklerini (çözümlerini) bulan bir formüldür. İkinci dereceden bir denklemi çözmek için ikinci dereceden formülü kullanmak yerine çarpanlara ayırma, tam kareye tamamlama, grafik çizme ve diğerleri gibi başka yollar da vardır.

<span class="mw-page-title-main">Trigonometrik polinom</span> Matematiksel bir fonksiyon

Sayısal analiz ve matematiksel analiz alt alanlarında, bir trigonometrik polinom, sin(nx) ve cos(nx) fonksiyonlarının sonlu bir doğrusal kombinasyonu olup n bir veya daha fazla doğal sayı değerini alır. Gerçel değerli fonksiyonlar için, katsayılar gerçel sayılar olarak alınabilir. Kompleks katsayılar için, böyle bir fonksiyon ile sonlu bir Fourier serisi arasında bir fark yoktur.