İçeriğe atla

Çarpanlara ayırma

x2 + cx + d = (x + a)(x + b)

Çarpanlara ayırma, bir polinomun, tam sayının ya da matrisin kendisini oluşturan bileşenlerin çarpımı şeklinde yazılmasıdır. Örneğin 15 sayısı 3 ve 5 asal sayılarının çarpımı şeklinde yazılabilir: 3 × 5 ya da x2 − 4 polinomu (x − 2)(x + 2) şeklinde yazılabilir.

Çarpanlara ayırmadaki temel amaç bir bütünü daha küçük yapılara ayırmaktır; sayıları asal sayıların çarpımı, polinomları indirgenemeyen polinomların çarpımı şeklinde yazmak gibi. Çarpanlara ayırmanın tersi genişletmedir.

Asal çarpanlarına ayırma çok büyük sayılar için zor bir problemdir. Bu problemin bilinen bir çözümü yoktur. Bu yüzden RSA gibi açık anahtarlı şifreleme yöntemlerinde kullanılır.

Tam sayılar

Aritmetiğin temel teoremine göre 1'den büyük her tam sayı asal sayıların çarpımı şeklinde yazılabilir.

Bir n tam sayısını çarpanlara ayırmak için, n'nin bölenini q'yu bulmak veya n'nin asal olduğuna karar vermek için bir algoritmaya gerek vardır. Böyle bir bölen bulunduğunda, bu algoritmanın q ve n / q çarpanlarına tekrar tekrar uygulanması, sonunda n'nin tam çarpanlara ayrılmasını sağlar.[1]

n'nin bir q bölenini bulmak için, 1 < q ve q2n olacak şekilde q'nun tüm değerlerini test etmek yeterlidir. Aslında, eğer r, r2 > n olacak şekilde n'nin bir böleniyse, o zaman q2n olacak şekilde q = n / r, n'nin bir bölenidir.

q'nun değerleri artan sırada denenirse, bulunan ilk bölen mutlaka bir asal sayıdır ve r = n / q ortak çarpanının q'dan küçük herhangi bir böleni olamaz. Tam çarpanları bulmak için, r'nin q'dan küçük ve r'den büyük olmayan bir bölenini arayarak algoritmaya devam etmek yeterlidir.

Yöntemi uygulamak için q'nun tüm değerlerini denemeye gerek yoktur. Prensip olarak, sadece asal bölenleri denemek yeterlidir. Bunun, örneğin Eratosten kalburu ile üretilebilecek bir asal sayılar tablosuna sahip olması gerekir. Çarpanlara ayırma yöntemi esas olarak Eratosthenes'in eleği ile aynı işi yaptığından, yalnızca asal olup olmadıkları hemen belli olmayan sayıları bölen için denemek genellikle daha kolaydır. Tipik olarak, 2, 3, 5 ve son hanesi 1, 3, 7, 9 olan ve rakamların toplamı 3'ün katı olmayan > 5 sayıları test edilerek ilerlenebilir.

Bu yöntem, küçük tam sayıları çarpanlara ayırmak için iyi çalışır, ancak daha büyük tam sayılar için verimsizdir. Örneğin, Pierre de Fermat, 6. Fermat sayısının

'nin asal sayı olmadığını keşfedemedi. Aslında yukarıdaki yöntemi uygulamak, 10  ondalık basamaklı bir sayı için 10.000'den fazla bölme gerektirir.

Daha verimli çarpanlara ayırma algoritmaları vardır. Ancak nispeten verimsiz kalırlar, çünkü tekniğin mevcut durumu ile, rastgele seçilen iki asal sayının çarpımı olan 500 ondalık basamaklı bir sayı daha güçlü bilgisayarlarla bile çarpanlara ayrılamaz. Bu, güvenli internet iletişimi için yaygın kullanılan RSA şifreleme sisteminin güvenliğini sağlar.

Örnek

n = 1386'yı asal sayılara ayırmak için:

  • 2:'ye bölme ile başlayın: sayı çifttir ve n = 2 · 693. Birinci bölen adayı olarak 693 ve 2 ile devam edin.
  • 693 tektir (2 bölen değildir), ancak 3:'ün katıdır: biri 693 = 3 · 231 ve n = 2 · 3 · 231'e sahiptir. 231 ve birinci bölen adayı olarak 3 ile devam edin.
  • 231 aynı zamanda 3:'ün katıdır: 231 = 3 · 77 ve dolayısıyla n = 2 · 32 · 77 vardır. Birinci bölen adayı olarak 77 ve 3 ile devam edin.
  • 77, 3'ün katı değildir, çünkü rakamlarının toplamı 14'tür, 3'ün katı değildir. Son basamağı 7 olduğu için 5'in katı da değildir. Test edilecek bir sonraki tek bölen 7'dir. 77 = 7 · 11 ve dolayısıyla n = 2 · 32 · 7 · 11. Bu, 7'nin asal olduğunu gösterir (doğrudan test edilmesi kolaydır). Birinci bölen adayı olarak 11 ve 7 ile devam edin.
  • 72 > 11 olarak biri bitti. Böylece 11 asaldır ve asal çarpanlara ayırma
1386 = 2 · 32 · 7 · 11.

Polinomlar

Karesel polinomlar

şeklindeki her karesel polinom,

şeklinde çarpanlarına ayrılabilir.

Karesel özdeşlikler

(a + b)2 = a2 + 2ab + b2

Aşağıdaki özdeşlikler kullanılarak bazı polinomlar kolayca çarpanlarına ayrılabilir.

ve

Örneğin,

İki kare toplamı/farkı

İki kare farkı,

Eğer iki kare toplam halindeyse karmaşık sayı cinsinden çarpanlarına ayrılır,

Gruplandırarak çarpanlara ayırma

Birden çok değişkenin olduğu bir ifadede önce benzer terimler bir araya getirilip ortak çarpan parantezine alınır, ardından oluşan diğer ortak terim de paranteze alınır. Örneğin,

Benzer terimler bir araya getirlir,

Ortak çarpan parantezine alınır,

Oluşan yeni ortak terim de paranteze alınır

Kaynakça

  1. ^ Hardy; Wright (1980). An Introduction to the Theory of NumbersÜcretsiz kayıt gerekli (5. bas.). Oxford Science Publications. ISBN 978-0198531715. 

Dış bağlantılar

İlgili Araştırma Makaleleri

Matematikte reel sayılar kümesi, Fransızca réel “gerçek” den gelmektedir. Oranlı sayılar kümesinin evrim sürecinden elde edilen bir varsayım kombinasyonudur. Reel sayılar kümesi sembolüyle gösterilir.

<span class="mw-page-title-main">Aritmetiğin temel teoremi</span>

Matematik'te aritmetiğin temel teoremi, aynı zamanda benzersiz çarpanlara ayırma teoremi ve asal çarpanlara ayırma teoremi olarak da adlandırılır, şunu belirtir: 1'den büyük her tamsayı, benzersiz bir şekilde asal sayıların üslerinin çarpımı olarak gösterilebilir.

<span class="mw-page-title-main">Asal sayı</span> sadece iki pozitif tam sayı böleni olan doğal sayılardır

Bir asal sayı, yalnızca 1'den büyük olup kendisinden küçük iki doğal sayının çarpımı olarak ifade edilemeyen bir doğal sayıdır. 1'den büyük ve asal olmayan doğal sayılara bileşik sayı adı verilir. Örneğin, 5 bir asal sayıdır çünkü onu bir çarpım olarak ifade etmenin mümkün olan yolları, 1 × 5 veya 5 × 1, yalnızca 5 sayısını içermektedir. Ancak, 4 bir bileşik sayıdır çünkü bu, her iki sayının da 4'ten küçük olduğu bir çarpım şeklindedir. Asal sayılar, aritmetiğin temel teoreminden ötürü sayı teorisi alanında merkezi öneme sahiptir: 1'den büyük her doğal sayı, ya bir asal sayıdır ya da asal sayıların çarpımı olarak, sıralamalarından bağımsız bir şekilde, benzersiz olarak çarpanlarına ayrılabilir.

Matematikte cebirin temel teoremi karmaşık değişkenli polinomların köklerinin varlığıyla ilgili temel bir sonuçtur. D'Alembert-Gauss teoremi olarak da anılmaktadır.

P harfi "polynomial", NP harfleri ise "non-deterministic polynomial" ifadelerini temsil eder, Türkçe karşılıkları "polinom" ve "belirleyici olmayan polinom"dur. "P eşittir NP?" ise hesaplama teorisi'nin en temel ve meşhur problemidir.

<span class="mw-page-title-main">Rasyonel sayılar</span>

Rasyonel sayılar, iki tam sayı arasındaki oranı temsil eden, bir pay p ve sıfırdan farklı bir payda q olmak üzere, bir bölme işlemi veya kesir formunda ifade edilebilen sayıları tanımlar. Örneğin, rasyonel bir sayı olarak kabul edilir, bu kapsamda her tam sayı da rasyonel sayılar kategorisindedir. Rasyonel sayılar kümesi, çoğunlukla kalın harf biçimindeki Q veya karatahta vurgusu kullanılarak şeklinde ifade edilir.

<span class="mw-page-title-main">Polinom</span> değişkenlerin çarpımlarının toplamı, değişkenlerin gücü ve katsayılar

Matematikte, bir polinom belirli sayıda bağımsız değişken ve sabit sayıdan oluşan bir ifadedir. Polinom kendi içinde toplama, çıkarma, çarpma ve negatif olmayan sayının üssünü alma işlemlerini kullanır. Örnek olarak tek bilinmeyenli bir polinom olan x2 − 4x + 7, ikinci dereceden oluşan bir polinomdur. Diğer bir örnek olarak, x2 − 4/x + 7x3/2 bir polinom değildir, çünkü polinomlarda terimlerin derecelerinin doğal sayı olma zorunluluğu vardır 2. terimde x′i ele alan bir bölme işlemi x'in derecesini negatif yapmaktadır ve 3. terim doğal sayı olmayan bir derece içermektedir (3/2).

RSA, güvenliği tam sayıları çarpanlarına ayırmanın algoritmik zorluğuna dayanan bir tür açık anahtarlı şifreleme yöntemidir. 1978’de Ron Rivest, Adi Shamir ve Leonard Adleman tarafından bulunmuştur. Bir RSA kullanıcısı iki büyük asal sayının çarpımını üretir ve seçtiği diğer bir değerle birlikte ortak anahtar olarak ilan eder. Seçilen asal çarpanları ise saklar. Ortak anahtarı kullanan biri herhangi bir mesajı şifreleyebilir, ancak şu anki yöntemlerle eğer ortak anahtar yeterince büyükse sadece asal çarpanları bilen kişi bu mesajı çözebilir. RSA şifrelemeyi kırmanın çarpanlara ayırma problemini kırmak kadar zor olup olmadığı hala kesinleşmemiş bir problemdir.

Matematikte, sıfır olmayan iki veya daha fazla pozitif tam sayının en büyük ortak böleni, tam sayıların hepsini de bölen en büyük pozitif tam sayıdır. Örneğin; 8 ve 12’nin ebob’u 4’tür.

Cisim, halka ve grup gibi soyut bir cebirsel yapıdır. Kabaca, elemanları arasında toplama, çıkarma, çarpma ve bölme yapılabilen ve bu işlemlerde sayılardan alışık olduğumuz temel aritmetik kurallarının geçerli olduğu bir küme olarak tanımlanabilir.

abc sanısı veya abc konjektürü sayılar teorisindeki bir sanı yani konjektürdür. 1985'te Joseph Oesterlé ve David Masser tarafından ortaya atılmıştır. Biri diğer ikisinin toplamı şeklinde ifade edilen üç tam sayının özellikleri üzerine kurulmuştur. Problemi çözmek için açık bir strateji bulunmadığı halde, sanı bazı ilginç sonuçları sayesinde tanınmıştır.

Rabin şifreleme sistemi, Rabin kriptoloji veya Rabin kriptosistemi, güvenliği RSA'daki gibi tam sayı çarpanlarına ayırmanın zorluğu üzerine kurgulanmış olan asimetrik bir kriptografik tekniktir. Bununla birlikte, Rabin kriptosisteminin avantajı, saldırgan tam sayıları verimli bir şekilde çarpanlarına ayıramadığı sürece, seçilmiş bir düz metin saldırısına karşı hesaplama açısından güvenli olduğu matematiksel olarak kanıtlanmıştır, oysa RSA için bilinen böyle bir kanıt yoktur. Rabin fonksiyonunun her çıktısının dört olası girdiden herhangi biri tarafından üretilebilmesi dezavantajı; her çıktı bir şifreli metinse, olası dört girdiden hangisinin gerçek düz metin olduğunu belirlemek için şifre çözmede ekstra karmaşıklık gerekir.

Sayı teorisinde, asal çarpanlara ayırma bir bileşik sayının, çarpıldıklarında yine aynı sayıyı verecek şekilde, bir ve kendisi dışındaki bölenlerine ayrılmasıdır.

Matematikte, özellikle soyut cebir ve uygulamalarında, ayrık logaritma, genel logaritmanın grup kuramındaki karşılığıdır. Genel olarak bakıldığında, loga(b) ifadesi, ax = b ifadesinin gerçel sayılar kümesi içindeki çözümlerine karşılık gelir. Benzer olarak, g ve h sonlu devirli grup G'nin elemanları olduğunda, gx = h ifadesinin çözümü olan x sonuçlarına h'nin g tabanındaki ayrık logaritması denir.

Goldwasser–Micali (GM) kriptosistemi 1982 yılında Shafi Goldwasser ve Silvio Micali tarafından geliştirilmiş bir asimetrik anahtar şifreleme algoritmasıdır. GM standart kriptografik varsayımlar altında güvenliği kanıtlanmış ilk probabilistik açık anahtar şifreleme yöntemidir. Bununla birlikte başlangıç düz metinden yüzlerce kez daha geniş olan şifreli metinler olduğundan verimli bir kriptosistem değildir. Kriptosistemin güvenlik özelliğini kanıtlamak için Shafi Goldwasser ve Silvio Micali anlamsal güvenliğin geniş alanda kullanılan bir tanımını önerdiler.

Sayı kuramında yarı asal sayılar, iki tane asal sayının çarpımı şeklinde yazılabilen pozitif tam sayılardır. Dolayısıyla ya bir asal sayının karesidirler ya da dört tane farklı pozitif bölene sahiptirler. Buna bağlı olarak, dört tane pozitif bölene sahip her sayı yarı asal olmak zorunda değildir. Bir asal sayının karesi olmayan asal sayılara ayrık asal sayılar denir. Bir yarı asal sayı n için Ω(n) tanım gereği ikiye eşittir. Yarı asallar RSA gibi kriptografi sistemlerinde kullanılır.

<span class="mw-page-title-main">Eliptik eğri kriptografisi</span>

Eliptik Eğri Kriptolojisi, sonlu cisimler üzerindeki eliptik eğrilerin cebirsel topolojisine dayanan bir açık anahtar şifrelemesidir. Eliptik Eğri Kriptolojisi, diğer şifrelemeler göre daha küçük anahtar boyuna ihtiyaç duyar.

Schmidt-Samoa şifreleme, Alman araştırmacı Katja Schmidt-Samoa tarafından 2005’te oluşturulan asimetrik kriptografi yöntemidir. Bu şifrelemenin güvenilirliği Rabin'deki gibi çarpanlara ayırma probleminin zorluğuna dayanmaktadır. Bu algoritma, Rabin'in aksine şifreleme hızı pahasına, şifre çözmede belirsizlik oluşturmamaktadır.

<span class="mw-page-title-main">Bézout teoremi</span> aciklama

Bézout teoremi, cebirsel geometride n değişkenli n polinomun ortak sıfırlarının sayısı ile ilgili bir ifadedir. Orijinal biçiminde teorem, genel olarak ortak sıfırların sayısının, polinomların derecelerinin çarpımına eşit olduğunu belirtir. Adını Fransız matematikçi Étienne Bézout'dan almıştır.

Matematikte, Ruffini'nin kuralı, bir polinomun Öklid bölünmesinin x – r biçimindeki bir denklem ile kağıt kalemle hesaplanması için geliştirilmiş bir yöntemdir. 1804 yılında Paolo Ruffini tarafından tanımlanmıştır. Kural, bölenin doğrusal bir bölen olduğu özel bir sentetik bölme durumudur.