İçeriğe atla

Doğrusal fonksiyon (kalkülüs)

Doğrusal fonksiyon grafiği: y(x) = −x + 2

Kalkülüs ve matematiğin ilgili dallarında doğrusal fonksiyon, reel sayılardan reel sayılara giden ve grafiği kartezyen koordinat sisteminde bulunan bir fonksiyondur. Daha basit ifade ile derecesi sıfır veya bir olan bir polinom veya sıfır polinomudur. Giriş değişkeninin değeri değiştiğinde, çıkıştaki değişim, giriş değişkeninin sabit bir çarpanıdır.

Doğrusal fonksiyonlar doğrusal denklemlerle ilgilidir.

Özellikleri

Doğrusal fonksiyon, x değişkenine sahip ve derecesi en fazla bir olan bir polinom fonksiyondur. Yani aşağıdaki denklemi sağlayan fonksiyondur.

f(x) = ax + b.

Burada x, bir değişkendir. Bir doğrusal fonksiyonun grafiğinin tüm noktalarının kümesi, kartezyen koordinat sistemindeki (x, f(x)) koordinatlarında bulunan bir doğrudur. Bu yüzdendir ki, bu tür fonksiyonlara doğrusal denir. Bazıları, çeşitli durumlar için, değişkenin katsayısının (ax + b ifadesindeki a) sıfır olmaması gerektiğini savunuyor.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Polinom</span> değişkenlerin çarpımlarının toplamı, değişkenlerin gücü ve katsayılar

Matematikte, bir polinom belirli sayıda bağımsız değişken ve sabit sayıdan oluşan bir ifadedir. Polinom kendi içinde toplama, çıkarma, çarpma ve negatif olmayan sayının üssünü alma işlemlerini kullanır. Örnek olarak tek bilinmeyenli bir polinom olan x2 − 4x + 7, ikinci dereceden oluşan bir polinomdur. Diğer bir örnek olarak, x2 − 4/x + 7x3/2 bir polinom değildir, çünkü polinomlarda terimlerin derecelerinin doğal sayı olma zorunluluğu vardır 2. terimde x′i ele alan bir bölme işlemi x'in derecesini negatif yapmaktadır ve 3. terim doğal sayı olmayan bir derece içermektedir (3/2).

<span class="mw-page-title-main">Parabol</span> ikinci dereceden olan fonksiyonların grafiği

Parabol, bir düzlemde alınan sabit bir "d" doğrusu ile sabit bir "F" noktasından eşit uzaklıktaki noktaların geometrik yerleştirilmesidir. Cebirde ise y=ax2+bx+c şeklindeki ikinci derece fonksiyonları grafiği olarak bilinir.

<span class="mw-page-title-main">Doğrusal denklem</span>

Doğrusal ya da lineer denklem terimlerinin her biri ya birinci dereceden değişken ya da bir sabit olan denklemlerdir. Böyle denklemlere "doğrusal" denmesinin nedeni içerdikleri terim ve değişkenlerin sayısına bağlı olarak (n) düzlemde ya da uzayda bir doğru belirtmesindendir. Doğrusal denklemlerin en yaygını bir ve değişkeni içeren aşağıdaki formdur:

En küçük kareler yöntemi, birbirine bağlı olarak değişen iki fiziksel büyüklük arasındaki matematiksel bağlantıyı, mümkün olduğunca gerçeğe uygun bir denklem olarak yazmak için kullanılan, standart bir regresyon yöntemidir. Bir başka deyişle bu yöntem, ölçüm sonucu elde edilmiş veri noktalarına "mümkün olduğu kadar yakın" geçecek bir fonksiyon eğrisi bulmaya yarar. Gauss-Markov Teoremi'ne göre en küçük kareler yöntemi, regresyon için optimal yöntemdir.

Bir olasılık dağılımı bir rassal olayın ortaya çıkabilmesi için değerleri ve olasılıkları tanımlar. Değerler olay için mümkün olan tüm sonuçları kapsamalıdır ve olasılıkların toplamı bire eşit olmalıdır. Örneğin, bir rassal olay olarak madeni paranın tek bir defa havaya atılıp yere düşmesi ele alınsın; değerler 'yazı' veya 'tura' veya bunlar isimsel değişken ölçeğinde ifade edilirse 0 (yazı) veya 1 (tura) olur; olasılıklar ise her iki değer için ½ olacaktır. Böylece madeni bir paranın tek bir defa atılma olayı için iki değer ve ilişkili iki olasılık bu rassal olayın olasılık dağılımı olur. Bu dağılım ayrık olasılık dağılımıdır; çünkü sayılabilir şekilde ayrı ayrı sonuçlar ve bunlara bağlı olan pozitif olasılıklar vardır.

<span class="mw-page-title-main">Olasılık kütle fonksiyonu</span>

Olasılık kuramı bilim dalında bir olasılık kütle fonksiyonu bir ayrık rassal değişkenin olasılığının tıpatıp belli bir değere eşit olduğunu gösteren bir fonksiyondur. Olasılık kütle fonksiyonu, olasılık yoğunluk fonksiyonundan farklıdır; çünkü olasılık yoğunluk fonksiyonu yalnızca sürekli rassal değişkenler için tanımlanmış olup doğrudan doğruya olasılık değerini vermezler. Olasılık yoğunluk fonksiyonunun bir belli değer aralığı için integrali alınırsa bu rassal değişkenin belirlenen değer aralığı için olasılığını verir.

<span class="mw-page-title-main">Doğrusal denklem dizgesi</span>

Doğrusal denklem dizgesi, birkaç tane aynı tip değişkenleri içeren birkaç tane doğrusal denklemlerin oluşturduğu topluluktur. Örneğin:

Matematikte, birkaç fonksiyon ya da fonksiyon gruplarının kendi isimleri yeterli öneme layıktır. Bu makaleler fonksiyonları açıklamak için olan daha ayrıntılı olarak gösteren bir listedir. İstatistik dışı ve matematiksel fizik gelişmeleri sonucu özel fonksiyonlar büyük bir teori olmuştur. Modern bir, soyut incelik fonksiyon uzayıları geniş karşılaştırma görünümü, sonsuz-boyutlu ve 'isimsiz' fonksiyonlar içindeki ve simetri ya da ilişki harmonik analiz ve grup temsilileri gibi özellikler ile özel fonksiyonlar ile seçilmiştir.

<span class="mw-page-title-main">Eğim</span>

Matematikte bir doğrunun eğimi ya da gradyanı o doğrunun dikliğini, eğimliliğini belirtir. Daha büyük eğim, daha dik bir doğru demektir.

<span class="mw-page-title-main">Öklid uzayı</span> Öklid geometrisinin yüksek boyutlu vektör uzaylarına genelleştirilmesi

Matematikte Öklid uzayı, Öklid geometrisinin üç boyutlu uzayıdır ve bu kavramlar, çok boyutlu olarak genelleştirilir. “Öklid” terimi bu uzayları, Öklid geometrisi olmayan eğimli uzaydan ve Einstein'nın genel görelilik kuramından ayırt eder. Bu adı Yunan matematikçi Öklid'den dolayı almıştır.

<span class="mw-page-title-main">Fonksiyon grafiği</span> bir fonksiyonun (x, f(x)) çiftleri kümesi olarak gösterimi

Matematik'te bir fonksiyon'un grafiği, sıralı çiftlerin kümesidir.

Matematikte doğrusal fonksiyon, her ne kadar bu terimle ile ifade edilse bile aslında şu iki farklı terimle ilgilidir:

<span class="mw-page-title-main">Sabit fonksiyon</span>

Matematikte sabit fonksiyon, her giriş değeri için çıkış değerini daima sabit kaldığı bir fonksiyondur. Örneğin; , bir sabit fonksiyondur. Çünkü, giriş değeri ne olursa olsun  değeri daima 4'tür.

Matematikte, tek fonksiyon ve çift fonksiyon, aralarında simetri ilişki bulunan ve toplamaya göre tersleri olan fonksiyonlardır. Matematiksel analizin birçok alanında, özellikle kuvvet serisi ve Fourier serisinde sıkça kullanılır. Kuvvet fonksiyonunun eş kuvvetlerine göre adlandırılır ve şu şartı şağlar: Eğer n çift tam sayı ise, f(x) = xn, çift fonksiyon; n tek tam sayı ise, fonksiyon tek fonksiyondur.

<span class="mw-page-title-main">İşaret (matematik)</span>

Matematikte işaret kavramı, sıfırdan farklı her bir reel sayının pozitif veya negatif olduğunu belirtir. Her ne kadar bazen işaretli sıfır kullanılsa bile, sıfırın kendisi işaretsizdir. Matematik ve fizikte kullanılan reel sayıların toplamaya göre tersini ifade etmek için işaret değiştirme işlemi yapılır.

<span class="mw-page-title-main">Parametre</span> belirli bir sistemi tanımlamak veya sınıflandırmak için yardımcı olabilecek herhangi bir özellik

Parametre belirli bir sistemi tanımlamak veya sınıflandırmak için yardımcı olabilecek herhangi bir özellik. Parametre, sistemi tanımlarken veya performansını, durumunu değerlendirirken yararlı veya kritik olan bir sistem unsurudur.

<span class="mw-page-title-main">Bézout teoremi</span> aciklama

Bézout teoremi, cebirsel geometride n değişkenli n polinomun ortak sıfırlarının sayısı ile ilgili bir ifadedir. Orijinal biçiminde teorem, genel olarak ortak sıfırların sayısının, polinomların derecelerinin çarpımına eşit olduğunu belirtir. Adını Fransız matematikçi Étienne Bézout'dan almıştır.

<span class="mw-page-title-main">Matematikte simetri</span> matematikte simetri kavramı

Simetri yalnızca geometride değil, matematiğin diğer dallarında da ortaya çıkar. Simetri bir tür değişmezliktir: matematiksel bir nesnenin bir dizi işlem veya dönüşüm altında değişmeden kaldığı özelliktir.

Doğrusallık, grafiksel olarak düz bir çizgi olarak gösterilebilen matematiksel bir ilişkinin (fonksiyonun) özelliğidir. Doğrusallık, orantılılık kavramı ile yakından ilişkilidir. Fizikteki örnekler, bir elektrik iletkenindeki voltaj ve akımın doğrusal ilişkisini ve kütle ve ağırlık ilişkisini içermektedir. Daha karmaşık ilişkiler doğrusal olarak sayılmamaktadır.

<span class="mw-page-title-main">Düzlemsel eğri</span>

Matematikte, bir düzlem eğrisi veya düzlemsel eğri, bir düzlem içinde yer alan bir eğri olup söz konusu düzlem, bir Öklid düzlemi, bir afin düzlem veya bir projektif düzlem olabilir. En sık çalışılan durumlar, düzgün düzlem eğrileri ve cebirsel düzlem eğrisidir.