İçeriğe atla

Polinom

3. dereceden bir polinomun grafiği:

=1/4(x+4)(x+1)(x-2)

Matematikte, bir polinom belirli sayıda bağımsız değişken ve sabit sayıdan oluşan bir ifadedir. Polinom kendi içinde toplama, çıkarma, çarpma ve negatif olmayan sayının üssünü alma işlemlerini kullanır. Örnek olarak tek bilinmeyenli bir polinom olan x2 − 4x + 7, ikinci dereceden oluşan bir polinomdur. Diğer bir örnek olarak, x2 − 4/x + 7x3/2 bir polinom değildir, çünkü polinomlarda terimlerin derecelerinin doğal sayı olma zorunluluğu vardır 2. terimde x′i ele alan bir bölme işlemi x'in derecesini negatif yapmaktadır ve 3. terim doğal sayı olmayan bir derece içermektedir (3/2).

Polinomlar, bilimde ve matematik alanında sıkça görülür. Ekonomiden kimyaya, kimyadan fiziğe ve sosyal bilimlerde problemlerin çözülmesi için kullanılır. Polinomlar, toplama işlemlerinde ve sayısal analizlerde diğer fonksiyonları belirlemek için kullanılır. İleri seviye matematikte, polinomlar, polinom halkaları oluşturmak için kullanılır ve bu halkalar temel matematikte ve cebirsel geometride kullanılan merkezi bir kavramdır.

Bu ismin akılda kalması amacıyla, Türk Dil Kurumu'nun da belirttiği polinom sözlük anlamıyla "çok terimli" anlamına gelmektedir.[1]

Etimoloji

Oxford İngilizce Sözlüğü'ne göre, polinom, binom kelimesindeki bi- kökünün Yunanca "poli" kökü ile değiştirilmesiyle oluşmuş bir kelimedir. Yunanca kelime poli, çok anlamına gelmektedir. polinom kelimesi ilk 17. yüzyılda kullanılmıştır.[2]

Notasyon

Bir polinomda belirsiz X, formüllerde P ya da P(X) olarak belirebilir.

Genelde, polinomun ismi P(X) değil, P′dir. Ancak, eğer a bir sayı, bir değişken, başka bir polinom, veya, daha genel olarak herhangi bir ifadeyi belirtmek için kullanılırsa, P(a) teamül olarak P′deki X′in yerine a′nın geçmesini belirtir. Örnek olarak polinom P, yandaki fonksiyonu tanımlar:

İlişkilendirilen fonksiyonda bilinmeyenler için büyük harf ve değişkenler için küçük harf kullanmak bilinen bir uzlaşımdır.

Özellikle, eğer a = X olursa, P(a)′nın tanımı P = P(X)′i belirtir.

Bu eşitlik bazı durumlarda sözle ifade etmeyi basitleştirir. Örneğin ″P(X) bir polinom olsun″ yerine ″X bilinmeyeni içinde P bir polinom olsun″ kullanılır. Diğer yandan, bilinmeyenin ismini vurgulamak gerekli olmadığı zaman, eğer polinomun her görünüşünde bilinmeyenin ismi gözükmüyorsa çoğu formül daha basit ve okuması daha kolay olur.

Polinomların Aritmetiği

Toplama

Polinomlar toplamanın birleşmeli yasasını kullanarak (bütün terimlerin tek bir toplamda birleştirilmesi), mümkün olduğunca tekrar sıralanıp, benzeri terimler birleştirilebilir.[3][4]

Örneğin:

  1. olsun
  2. olsun
  3. sonrasında
  4. basitleştirirsek:

Polinomların toplamı polinom verir.[5]

Katsayılar Toplamı: Bir polinomun katsayılar toplamını bulabilmek için o polinomun tüm değişkenlerine 1 vermeliyiz.

Örneğin:

P(3x+2)'in katsayılar toplamı P(5).

Çift dereceli terimlerin katsayılarının toplamı.

Polinomun sadece çift dereceli terimlerinin katsayılar toplamını bulabilmek için değişkenlere 1 ve -1 değerlerini vererek çıkan sonucu toplar ve ikiye böleriz. Sadece tek dereceli terimlerim katsayılar toplamı için ise aradaki toplama işlemini çıkarma işlemine çevirerek sonuca ulaşmak mümkündür.

Çarpım

İki polinomun çarpımlarının terimlerinin toplamını çözmek için, dağılma yasası tekrar edecek şekilde uygulanılır ki bu, bir polinomun her teriminin diğer polinomun her terimiyle çarpılmasıyla sonuçlanır.[3]

Örneğin:

  1. olsun
  2. olsun
  3. sonrasında
  4. basitleştirirsek:

Polinomların çarpımı polinom verir.[5]

Bölme

Polinom değerlendirmesi birinci dereceden bir polinomun polinom bölümlerindeki kalanı hesaplamak için kullanılabilir, çünkü f(x)′in (xa)′ya bölümü f(a)′dir; polinom kalan teoremine bakınız. Bu yöntem oran gerekli olmadığı zaman, çoğunlukta kullanılan bölüm algoritmasından daha verimli olur.

Diğer Özellikler

  • İki polinomun bileşke fonksiyonu bir polinomdur ki bu ilk polinomdaki değişkenin ikinci polinomdaki bir değişkenle değiştirilmesiyle elde edilir.[5]
  • anxn + an−1xn−1 + ... + a2x2 + a1x + a0 polinomunun türevi: nanxn−1 + (n−1)an−1xn−2 + ... + 2a2x + a1′dir. Eğer katsayı dizisi tam sayı içermezse (örneğin katsayılar asal sayı olan p′nin modülosu ise), o zaman kak, k kere ak′nin toplamı olarak yorumlanmalıdır. Örneğin tam sayı üstünde modülo p iken, xp + 1′nin türevi polinom 0′dır.[6]
  • Özel olarak; bir polinomun derecesi 3 ise polinoma kübik, derecesi 2 ise kuadratik, derecesi 1 ise doğrusal veya lineer, derecesi 0 ise (P(x)≠0) sabit polinom denir.
  • Sıfıra eşit olan bir polinoma sıfır polinomu denir ama sıfır polinomun derecesi 0 değildir. Sıfır polinomunun derecesi tanımlanmamıştır.

Hermit polinomları

Hermit polinomları Pierre-Simon Laplace tarafından 1810'da zor anlaşılır bir biçimde tanımlanmış ve 1859'da Pafnuty Chebyshev tarafından ayrıntılı olarak incelenmiştir. Diğer klasik dik polinomlar gibi, Hermit polinomları birkaç farklı başlangıç noktasından tanımlanabilir.

İlk altı Hermit polinomunun değer grafiği

Tanım

Olasılıkçıların kullandığı Hermit polinomu;

Fizikçilerin kullandığı Hermit polinomu;

Olasılıkçıların kullandığı Hermit polinomunun ilk on bir değeri;

Fizikçilerin kullandığı() Hermit polinomunun ilk altı değer grafiği

Özellikleri

dereceden bir Hermit polinomu dereceleri bir polinomdur. Olasılıkçıların() kullandığı Hermit polinomunun ilk terimindeki katsayısı 1'dir.Fiziklerin kullandığı Hermit polinomunun katsayısı

Diklik

ve dereceden polinomları için Bu polinomlar ağırlık işlevine(fonksiyon) göre dikliktir.

için)

ya da

( için)

Ayrıca bakınız

Kaynakça

  1. ^ "Türk Dil Kurulumu, Güncel Türkçe Sözlük". 8 Aralık 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 17 Aralık 2013. 
  2. ^ "polynomial" kelimesinin köken bilgisi. Sıkıştırılmış Oxford İngilizce Sözlüğü
  3. ^ a b Edwards, Harold M. (1995). Linear Algebra (İngilizce). Springer. s. 47. ISBN 9780817637316. 2 Ocak 2014 tarihinde kaynağından arşivlendi. Erişim tarihi: 11 Aralık 2013. 
  4. ^ Salomon, David (2006). Coding for Data and Computer Communications (İngilizce). Springer. s. 459. ISBN 9780387238043. 2 Ocak 2014 tarihinde kaynağından arşivlendi. Erişim tarihi: 11 Aralık 2013. 
  5. ^ a b c Barbeau, E.J. (2003). Polynomials (İngilizce). Springer. ss. 1-2. ISBN 9780387406275. 28 Mart 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Eylül 2020. 
  6. ^ Barbeau, E.J. (2003). Polynomials (İngilizce). Springer. ss. 64-65. ISBN 9780387406275. 2 Ocak 2014 tarihinde kaynağından arşivlendi. Erişim tarihi: 11 Aralık 2013. 

İlgili Araştırma Makaleleri

Matematikte cebirin temel teoremi karmaşık değişkenli polinomların köklerinin varlığıyla ilgili temel bir sonuçtur. D'Alembert-Gauss teoremi olarak da anılmaktadır.

<span class="mw-page-title-main">Türev alma kuralları</span> Vikimedya liste maddesi

Türev, matematikteki ve özellikle diferansiyeldeki temel kavramlardan biridir. Aşağıda temel türev alma kuralları ve bazı fonksiyonların türev kuralları yer almaktadır.

<span class="mw-page-title-main">Üs</span> matematik terimi

Üs, bazen kuvvet, b taban, n üs veya kuvvet olmak üzere, bn olarak gösterilen ve "b üssü n", "b üzeri n" veya "b'nin n'inci kuvveti" olarak telaffuz edilen matematiksel işlem. Eğer n pozitif bir tam sayıysa, tabanın tekrarlanan çarpımına karşılık gelir:

<span class="mw-page-title-main">Doğrusal denklem</span>

Doğrusal ya da lineer denklem terimlerinin her biri ya birinci dereceden değişken ya da bir sabit olan denklemlerdir. Böyle denklemlere "doğrusal" denmesinin nedeni içerdikleri terim ve değişkenlerin sayısına bağlı olarak (n) düzlemde ya da uzayda bir doğru belirtmesindendir. Doğrusal denklemlerin en yaygını bir ve değişkeni içeren aşağıdaki formdur:

Birinci dereceden bir bilinmeyenli denklemler; a sıfırdan farklı, b ise herhangi bir gerçel veya karmaşık sayı olmak üzere,

<span class="mw-page-title-main">Diskriminant</span>

Diskriminant matematik biliminde bir cebirsel kavramdır. Gerçel katsayılı ikinci derece polinom denklemlerin çözümü için kullanılır. İkinci dereceden büyük herhangi bir polinomun köklerinin bulunması için de bu kavram, köklerin toplamı için gereken ifadenin ve köklerin çarpımı için gereken ifadenin bulunması suretiyle genişletilmiştir. Bir polinom için çoklu köklerin varlığı veya yokluğu için gereken koşul da diskriminantın varlığı ve yokluğu ile bulunabilmektedir.

<span class="mw-page-title-main">Cebirsel sayılar</span>

Cebirsel sayılar, rasyonel katsayıları olan tek değişkenli sıfırdan farklı bir polinomun kökü olarak ifade edilebilen sayılardır. Mesela, altın oran, , cebirsel bir sayı örneğidir çünkü x2x − 1 polinomunun bir köküdür. Bu durumda, söz konusu polinomun değerinin sıfıra eşitlendiği x değeridir. Diğer bir örnek olarak, biçimindeki karmaşık sayı, x4 + 4 polinomunun bir kökü olduğundan dolayı cebirsel sayı olarak kabul edilir.

Olasılık kuramı bilim dalında matematiksel beklenti veya beklenen değer veya ortalama birçok defa tekrarlanan ve her tekrarda mümkün tüm olasılıklarını değiştirmeyen rastgele deneyler sonuçlarından beklenen ortalama değeri temsil eder. Bir ayrık rassal değişkennin alabileceği bütün sonuç değerlerin olasılıklarıyla çarpılması ve bu işlemin bütün değerler üzerinden toplanmasıyla elde edilen değerdir. Bir sürekli rassal değişken için rassal değişken ile olasılık yoğunluk fonksiyonunun çarpımının aralığı belirsiz integralidir. Fakat dikkat edilmelidir ki bu değerin genel pratik anlamla rasyonel olarak beklenmesi pek uygun olmayabilir, çünkü matematiksel beklentiin olasılığı çok düşük belki sıfıra çok yakın olabilir ve hatta pratikte matematiksel beklenti bulunmaz. Ağırlıklı ortalama olarak da düşünülebilir ki değerler ağırlık katsayıları verilen olasılık kütle fonksiyonu veya olasılık yoğunluk fonksiyonudur.

<span class="mw-page-title-main">Doğrusal denklem dizgesi</span>

Doğrusal denklem dizgesi, birkaç tane aynı tip değişkenleri içeren birkaç tane doğrusal denklemlerin oluşturduğu topluluktur. Örneğin:

<span class="mw-page-title-main">Ters fonksiyon</span>

Matematikte ters fonksiyon, bir fonksiyonun görüntü kümesinden alınan herhangi bir elemanını tanım kümesindeki aslına gönderen fonksiyona denir. Bir fonksiyonun tersi, fonksiyon birebir ve örten ise tanımlı olabilir. Ters fonksiyon ile gösterilir. Ancak yalnızca bir gösterim olup, "f(x) fonksiyonunun çarpmaya göre tersi" ile karıştırılmamalıdır.

Matematik'te, Turán eşitsizliği Paul Turán tarafından Legendre polinomu'larının genellemesi için bulundu. (ilk yayınlanması Szegö ) tarafından oldu.Başka diğer polinomlar içinde birçok genellemeler Turán eşitsizliği ile verilir.

<span class="mw-page-title-main">Laguerre polinomları</span>

Laguerre polinomları, matematikte adını Edmond Laguerre'den almıştır. Kanonik (benzer) adlandırma Laguerre denklemi'dir:

Rodrigues formülü matematikteki Legendre polinomları'nı üretmek için bir formüldür. Birbirlerinden bağımsız olarak, Olinde Rodrigues (1816), James Ivory (1824) ve Carl Gustav Jacob Jacobi (1827) tarafından ifade edilmiştir. 1865'te Hermite, Rodrigues'in formülü ilk bulan olduğuna dikkat çekmesinden sonra "Rodrigues formülü" ismi Heine tarafından 1878'de tanıtılmıştır, ayrıca diğer ortogonal polinomlar'ı genelleştirmek için de kullanılmıştır.Askey (2005) ayrıntılı olarak Rodrigues formülünün geçmişini açıklanmaktadır.

Matematikte katsayı, polinomun bazı terimlerinde, herhangi bir ifadenin bir serisindeki çarpma faktörüdür. Genellikle bir sayıdır fakat ifadede herhangi bir değişken de olabilir. Örneğin;

<span class="mw-page-title-main">Çarpanlara ayırma</span>

Çarpanlara ayırma, bir polinomun, tam sayının ya da matrisin kendisini oluşturan bileşenlerin çarpımı şeklinde yazılmasıdır. Örneğin 15 sayısı 3 ve 5 asal sayılarının çarpımı şeklinde yazılabilir: 3 × 5 ya da x2 − 4 polinomu (x − 2)(x + 2) şeklinde yazılabilir.

Matematiksel analizde Legendre fonksiyonları, aşağıdaki Legendre diferansiyel denkleminin çözümleridir.

 ;
<span class="mw-page-title-main">Hermit polinomu</span>

Hermit polinomları, 1810'da Pierre-Simon Laplace tarafından tanımlanmış, ancak pek tanınmayan bir biçimde 1859'da Pafnuty Chebyshev tarafından ayrıntılı olarak incelenmiştir. Chebyshev'in çalışması gözden kaçmış ve daha sonra 1864'te polinomlar üzerine yazan ve onları yeni olarak tanımlayan Charles Hermite'nin adıyla anılmışlardır. Sonuç olarak yeni değillerdi, ancak Hermite 1865'teki yayınlarında çok boyutlu polinomları tanımlayan ilk kişi olmuştur.

Matematikte, Ruffini'nin kuralı, bir polinomun Öklid bölünmesinin x – r biçimindeki bir denklem ile kağıt kalemle hesaplanması için geliştirilmiş bir yöntemdir. 1804 yılında Paolo Ruffini tarafından tanımlanmıştır. Kural, bölenin doğrusal bir bölen olduğu özel bir sentetik bölme durumudur.

Bessel polinomları, matematikteki ortogonal polinomların bir dizisidir. Bessel polinomlarıyla ilgili birbirinden farklı ama birbiriyle yakından ilişkili çok sayıda tanım vardır. Matematikçiler tarafından tercih edilen tanım şu seriyle verilmektedir:

Brahmagupta üçgeni, kenar uzunlukları ardışık pozitif tam sayılar ve alanı pozitif bir tam sayı olan bir üçgendir. Kenar uzunlukları 3, 4, 5 olan üçgen bir Brahmagupta üçgenidir ve kenar uzunlukları 13, 14, 15 olan üçgen de öyledir. Brahmagupta üçgeni, kenar uzunlukları ve alanı pozitif tam sayılar olan bir üçgen olan Heron üçgeninin özel bir durumudur, ancak kenar uzunluklarının ardışık tamsayılar olması gerekmez. Brahmagupta üçgeni, bu listeyi hesaplama yöntemini açıklamadan bu tür ilk sekiz üçgenin bir listesini veren Hint astronom ve matematikçi Brahmagupta onuruna bu şekilde adlandırılır.