İçeriğe atla

Polinom bölme

Cebirde polinom bölme, bir polinomu, eşit ya da daha düşük dereceli bir polinoma bölme algoritmasıdır. Uzun bölme olarak adlandırılan aritmetik yöntemin genellemesi olan algoritma, karmaşık bir bölme işlemini basite indirgediğinden elle yapılabilmektedir.

f(x) ve g(x) bir polinom (g(x) sıfırdan farklı olmak koşuluyla) olmak üzere

eşitliğini sağlayan q(x) ve r(x) polinomları bulunur. Burada r(x)'in derecesi g(x)'inkinden küçüktür.

Sentetik bölme işlemine f(x) pay, g(x) sıfırdan farklı bir payda olarak uygulandığında bölüm q(x) ve kalan r(x) olarak bulunacaktır. Bu yöntemde bölünen düzenli (cebirsel olmayan) bir ifade biçiminde yazılır.

En büyük derece dışındaki tüm terimlerin, katsayıları sıfır olsa bile yazılması gerekir.

Örnek

işlemi yapılırken ifade önce aşağıdaki biçimde yazılır.

Bölüm ve kalan şu biçimde hesaplanabilir:

1. Payın ilk terimi paydanın en yüksek dereceli terimine bölünür ve sonuç, (x3 ÷ x = x3 · x-1 = x3-1 = x2) çizgisinin üstüne yazılır.
2. Elde edilen sonuç paydayla çarpılır ve bu ifade (x2 · (x - 3) = x3 - 3x2) terimlerinin altına yazılır.
3. Çıkarma işlemi yapılır ve sonuç aşağıya yazılır. ((x3 - 12x2) - (x3 - 3x2) = -12x2 + 3x2 = -9x2) Payın bir sonraki terimi aşağıya alınır.
4. Önceki adımlar yinelenir.
5. 4. adım yinelenir.

Çizginin üstünde kalan polinom bölümü verirken en alttaki ifade (-123) kalandır.

İlköğretim öğrencilerine verilen uzun bölme algoritması bu yöntemin özel bir durumu olarak görülebilir.

Sentetik bölme

Sentetik bölme, iki polinomu, yukarıda açıklanan uzun bölme işlemindeki kayıtları tutmadan bölmek için kullanılan bir yöntemdir. Ne var ki, bu yöntem yalnızca tek değişkenli polinomları bölmek için kullanılmaktadır.

b bir rasyonel sayı olmak üzere, (x + b) ifadesinde b'den önce gelen im çizginin soluna yazılır. Böylece, olağan bölme işlemindeki çıkarma işlemleri yerine yalnızca toplama işlemi yapılır. Bu, elle yapılan bölme işlemlerindeki hata payını azaltmaktadır.

Ruffini kuralıyla bölme olarak da adlandırılan sentetik bölme Paolo Ruffini tarafından 1809 yılında bulunmuştur.

YUkarıdaki örnek bu yöntemle çözülecek olursa

yazımıyla başlayan çözüm yalnızca katsayılara odaklanır.

Çizgiden sonra gelen ilk katsayı üçüncü satıra alınır.

Aşağıya alınan sayı çizginin önündeki sayıyla çarpılır ve sonuç hemen yandaki sütuna yazılır.

Bu sütunda gerekli toplama işlemi gerçekleştirilir.

Önceki iki adım yinelendiğinde şu sonuca ulaşılmaktadır:

Son satırdaki sayılar en sağdaki dışında bölümün katsayılarını vermektedir. Kalan ise en sağdaki sayıdır. Kalanın hemen solunda yer alan sayıdan başlayarak sola doğru dereceler artar ve bölme sonucu

olarak hesaplanır.

Yüksek dereceli sentetik bölme

Yukarıda açıklanan sentetik bölme işlemi yalnızca birinci dereceden paydalara uygulanabilmektedir. Yine de, ikinci dereceden ya da daha yüksek dereceli tek değişkenli polinomlar için kullanılan bir kısayol da bulunmaktadır.

işlemi

yazımıyla başlar. Sağdaki ilk katsayının altı çizilir, bu sayı soldaki katsayılarla çarpılır ve elde edilen sonuçlar sağdaki sütunlara geçirilir.

Toplama işlemi yapılır.

Önceki iki adım yinelenir.

Altı çizili sayılar bölümün katsayılarını gösterirken en alt satırda kalan sayılar kalanın katsayılarını ifade etmektedir. Terimler sağdan sola artan derecelerle yazılır ve bölme sonucu

olarak hesaplanır.

Ayrıca bakınız

  • Polinom kalanı kuramı
  • Öklit bölgesi
  • Gröbner tabanı
  • İki polinomun en büyük ortak böleni

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">İntegral</span> fonksiyon eğrisinin altında kalan alan

İntegral veya tümlev, toplama işleminin sürekli bir aralıkta alınan hâlidir. Türev ile birlikte kalkülüsün temelini oluşturan iki işlemden birisidir. Kalkülüsün temel teoremi sayesinde aynı zamanda türevin ters işlemidir.

<span class="mw-page-title-main">Türev alma kuralları</span> Vikimedya liste maddesi

Türev, matematikteki ve özellikle diferansiyeldeki temel kavramlardan biridir. Aşağıda temel türev alma kuralları ve bazı fonksiyonların türev kuralları yer almaktadır.

Genel fonksiyonlarda limit hesaplamak için bazı pratik kurallar verilmiştir. Formüllerdeki a ve b sayılarının x'e göre sabit olduğu düşünülecektir

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

<span class="mw-page-title-main">Matris (matematik)</span>

Matematikte matris veya dizey, dikdörtgen bir sayılar tablosu veya daha genel bir açıklamayla, toplanabilir veya çarpılabilir soyut miktarlar tablosudur. Dizeyler daha çok doğrusal denklemleri tanımlamak, doğrusal dönüşümlerde çarpanların takibi ve iki parametreye bağlı verilerin kaydedilmesi amacıyla kullanılırlar. Dizeylerin toplanabilir, çıkartılabilir, çarpılabilir, bölünebilir ve ayrıştırılabilir olmaları, doğrusal cebir ve dizey kuramının temel kavramı olmalarını sağlamıştır.

Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. a ve b sayıları gerçek olursa karmaşık sayılar şu biçimde gösterilirler:

Pauli matrisleri 2 × 2' lik, karmaşık sayılar içeren Hermisyen ve üniter matrislerden oluşan bir settir. Genellikle Yunan alfabesindeki 'sigma' (σ), harfiyle sembolize edilirler. Bu matrisler:

<span class="mw-page-title-main">Üstel dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında üstel dağılımı bir sürekli olasılık dağılımları grubudur. Sabit ortalama değişme haddinde ortaya çıkan bağımsız olaylar arasındaki zaman aralığını modelleştirirken bir üstel dağılım doğal olarak ortaya çıkar.

Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın çoklu değişirli hallere genelleştirilmesidir.

<span class="mw-page-title-main">Diskriminant</span>

Diskriminant matematik biliminde bir cebirsel kavramdır. Gerçel katsayılı ikinci derece polinom denklemlerin çözümü için kullanılır. İkinci dereceden büyük herhangi bir polinomun köklerinin bulunması için de bu kavram, köklerin toplamı için gereken ifadenin ve köklerin çarpımı için gereken ifadenin bulunması suretiyle genişletilmiştir. Bir polinom için çoklu köklerin varlığı veya yokluğu için gereken koşul da diskriminantın varlığı ve yokluğu ile bulunabilmektedir.

<span class="mw-page-title-main">Büyük sayılar yasası</span>

Büyük Sayılar Kanunu ya da Büyük Sayılar Yasası, bir rassal değişkenin uzun vadeli kararlılığını tanımlayan bir olasılık teoremidir. Sonlu bir beklenen değere sahip birbirinden bağımsız ve eşit dağılıma sahip bir rassal değişkenler örneklemi verildiğinde, bu gözlemlerin ortalaması sonuçta bu beklenen değere yakınsayacak ve bu değere yakın bir seyir izleyecektir.

<span class="mw-page-title-main">Cauchy dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında Cauchy-Lorentz dağılımı bir sürekli olasılık dağılımı olup, bu dağılımı ilk ortaya atan Augustin Cauchy ve Hendrik Lorentz anısına adlandırılmıştır. Matematik istatistikçiler genel olarak Cauchy dağılımı adını tercih edip kullanmaktadırlar ama fizikçiler arasında Lorentz dağılımı veya Lorentz(yen) fonksiyon veya Breit-Wigner dağılımı olarak bilinip kullanılmaktadır.

<span class="mw-page-title-main">Doğrusal denklem dizgesi</span>

Doğrusal denklem dizgesi, birkaç tane aynı tip değişkenleri içeren birkaç tane doğrusal denklemlerin oluşturduğu topluluktur. Örneğin:

Matematikte, Gauss sabiti, G ile gösterilir,1 ve karekök 2 aritmetik-geometrik ortalama'sının tersi olarak tanımlanır.

Knuth yukarı ok gösterimi, matematikte, çok büyük tam sayıların gösterim yöntemidir. 1976'da Donald Knuth tarafından geliştirildi. Ackermann işlevi ve özel hiperişlem serisi ile oldukça bağlantılıdır. Çarpmanın, tekrarlı hiperişlem olarak tekrarlı toplama ve üs alma gibi görülebilmesi fikrine dayanır. Bu durumu devam ettirme tekrarlı üssü (tetrasyonu) ve çoğunlukla Knuth ok gösterimi kullanılarak ifade edilen aşırı seri üretiminin geri kalanını meydana getirir.

<span class="mw-page-title-main">Fonksiyon grafiği</span> bir fonksiyonun (x, f(x)) çiftleri kümesi olarak gösterimi

Matematik'te bir fonksiyon'un grafiği, sıralı çiftlerin kümesidir.

<span class="mw-page-title-main">Birleşme özelliği (ikili işlemler)</span>

Matematikte birleşmeli özellik, bir küme üzerine tanımlanmış ikili işlemlerin ayırt edici özelliklerinden biridir. Bu özelliği sağlayan ikili işlemlere birleşmeli işlem denir. Açık olarak bu özellik, (xy)z = x(yz) demektedir, yani üç elemanı "çarparken" işlem sırasının önemli olmadığını söylemektedir, bir başka deyişle birleşmeli özellikte işlem yaparken paranteze gerek olmadığını söylemektedir. Örneğin tam sayılar kümesi Z üzerine tanımlanmış olan toplama işlemi birleşmeli bir işlemdir ancak çıkarma işlemi birleşmeli değildir, çünkü eşitliği her için sağlanmasına karşın, eşitliği için sağlanmaz.

Successive Over-Relaxation (SOR) lineer denklem sistemlerini çözmek ve sonuca daha hızlı yakınsamak için sayısal lineer cebirde kullanılan bir çeşit Gauss-Seidel metodudur. Daha yavaş yakınsamalar içinse benzer bir metot olan iterative metot kullanılır.

Jacobi metodu, sayısal lineer cebirde lineer denklemlerin diyagonal olarak baskın sistemlerin çözümlerinin belirlenmesi için oluşturulmuş bir algoritmadır. Her diyagonal eleman tek tek çözülür ve yaklaşık bir değer olarak alınır. Bu aşama onlar yakınsayana kadar tekrarlanır. Bu algoritma matris köşegenleştirilmesi Jacobi dönüşüm metodunun sadeleştirilmiş şeklidir. Bu metot daha sonra Carl Gustav Jacob Jacobi olarak isimlendirilmiştir.

Matematikte, Ruffini'nin kuralı, bir polinomun Öklid bölünmesinin x – r biçimindeki bir denklem ile kağıt kalemle hesaplanması için geliştirilmiş bir yöntemdir. 1804 yılında Paolo Ruffini tarafından tanımlanmıştır. Kural, bölenin doğrusal bir bölen olduğu özel bir sentetik bölme durumudur.