İçeriğe atla

Sinir sistemlerinin evrimi

Sinir sistemlerinin evrimi, hayvanlarda (veya metazoanlarda) sinir sistemlerinin ilk gelişimine kadar uzanır. Nöronlar, hareketli tek hücreli ve kolonyal ökaryotlarda bulunan aksiyon potansiyellerinin mekanizmasını uyarlayarak çok hücreli hayvanlarda özel elektrik sinyal hücreleri olarak geliştirildi. Karmaşık protozoalarda bulunanlar gibi birçok ilkel sistem, hareketlilik ve hayatta kalmak için gerekli diğer yönler için elektriksel olmayan sinyalleme kullanır. Veriler, mesajlaşma için kimyasal bir gradyan kullanan bu sistemlerin bugün bilinen elektrik sinyal hücrelerine dönüştüğünü gösteriyor.[1]

İlk olarak Cnidaria (denizanası) gibi hayvanlarda görülen basit sinir ağları, motor ve duyusal işlevlerde ikili bir amaca hizmet eden polimodal nöronlardan oluşuyordu. Cnidarianlar, her ikisi de denizanası olmasına rağmen çok farklı sinir sistemlerine sahip olan Ctenophores (tarak denizanası) ile karşılaştırılabilir. Cnidarians'tan farklı olarak, Ctenophores, elektrokimyasal sinyalleme kullanan nöronlara sahiptir. Bu şaşırtıcıydı çünkü Ctenophora şubesinin, sinir sistemi olmayan Porifera'dan (süngerler) daha eski olduğu düşünülüyordu.

Bu, erken sinir sisteminin nasıl ortaya çıktığını açıklayan iki teorinin ortaya çıkmasına yol açtı. Bir teori, sinir sisteminin tüm bu şubelerin temel bir atasında ortaya çıktığını, ancak Porifera'da kaybolduğunu belirtti. Diğer teori, sinir sisteminin bağımsız olarak iki kez (birlikte evrim), biri bazal Cnidarianlar ve bazal taraklılar için ortaya çıktığını belirtir.

İki taraflı hayvanlar - omurgasızlarda ventral sinir kordonları ve kordalılarda bir notokord tarafından desteklenen dorsal sinir kordonları - merkezi bir bölge etrafında bulunan bir merkezi sinir sistemi ile evrimleşmiştir, bu süreç sefalizasyon olarak bilinir.

Sinir öncüleri

Nöral aktivite için gerekli olan aksiyon potansiyelleri tek hücreli ökaryotlarda gelişmiştir. Bunlar sodyum aksiyon potansiyelleri yerine kalsiyum kullanır, ancak mekanizma muhtemelen çok hücreli hayvanlarda nöral elektrik sinyalleşmesine uyarlanmıştır. Obelia gibi bazı sömürge ökaryotlarında, elektrik sinyalleri yalnızca sinir ağları aracılığıyla değil, aynı zamanda koloninin ortak sindirim sistemindeki epitel hücreleri aracılığıyla da yayılır. [2] Koanoflagellatlar, filasterea ve mesomycetozoea dahil olmak üzere birçok metazoan olmayan filumun, salgı SNARE'leri, Shank ve Homer dahil olmak üzere sinaptik protein homologlarına sahip olduğu bulunmuştur. Koanoflagellatlarda ve mesomycetozoea'da, bu proteinler kolonyal evrelerde yukarı doğru düzenlenir ve bu proto-sinaptik proteinlerin hücreden hücreye iletişim için önemini ortaya koyar.[3] Evrimde nöronların ve ilk sinir sistemlerinin nasıl ortaya çıktığına dair fikirlerin tarihi, Michel Antcil tarafından 2015 yılında yayınlanan bir kitapta tartışıldı.[4]

Süngerler

Süngerlerin birbirine sinaptik bağlantılarla bağlı hücreleri, yani nöronları ve dolayısıyla sinir sistemi yoktur. Bununla birlikte, sinaptik işlevde kilit rol oynayan birçok genin homologlarına sahiptirler. Son zamanlarda yapılan araştırmalar, sünger hücrelerinin, bir postsinaptik yoğunluğa (sinapsın sinyal alan kısmı) benzeyen bir yapı oluşturmak üzere bir araya toplanmış bir grup proteini ifade ettiğini göstermiştir. Ancak, bu yapının işlevi şu anda belirsizdir. Sünger hücreleri sinaptik iletim göstermese de, birbirleriyle kalsiyum dalgaları ve tüm vücudun kasılması gibi bazı basit eylemlere aracılık eden diğer uyarılar yoluyla iletişim kurarlar. Sünger hücrelerin komşu hücrelerle iletişim kurmasının diğer yolları, hücre zarlarının oldukça yoğun bölgeleri boyunca veziküller taşımadır. Bu veziküller iyonları ve diğer sinyal moleküllerini taşır, ancak gerçek bir sinaptik işlev içermez.[5]

Sinir ağları

Yetişkin bir kedinin serebral korteksi

Denizanası, taraklılar ve ilgili hayvanlar, merkezi bir sinir sisteminden ziyade yaygın sinir ağlarına sahiptir. Çoğu denizanasında sinir ağı vücuda az çok eşit olarak yayılır; tarak jölelerinde ağzın yakınında konsantre edilir. Sinir ağları, kimyasal, dokunsal ve görsel sinyalleri alan duyusal nöronlardan, vücut duvarının kasılmalarını aktive edebilen motor nöronlardan ve duyusal nöronlardaki aktivite modellerini algılayan ve motor nöron gruplarına sinyaller gönderen ara nöronlardan oluşur. sonuç. Bazı durumlarda, ara nöron grupları ayrı gangliyonlar halinde kümelenir.[6]

Işınsal simetrili canlılarda, sinir sisteminin gelişimi nispeten yapılandırılmamıştır. Bilaterilerin aksine, radiata sadece iki ilkel hücre katmanına sahiptir, endoderm ve ektoderm . Nöronlar, diğer tüm ektodermal hücre tipleri için öncü görevi gören özel bir ektodermal öncü hücreler grubundan üretilir.[7]

Sinir kordonları

A rod-shaped body contains a digestive system running from the mouth at one end to the anus at the other. Alongside the digestive system is a nerve cord with a brain at the end, near to the mouth.
Önde bir "beyin" bulunan bir sinir kordonu şeklinde iki taraflı bir hayvanın sinir sistemi

Mevcut hayvanların büyük çoğunluğu iki taraflıdır, yani birbirlerinin yaklaşık ayna görüntüsü olan sol ve sağ tarafları olan hayvanlar. Tüm bilaterilerin, 550-600 milyon yıl önce Ediakara döneminde ortaya çıkan solucan benzeri ortak bir atadan geldiği düşünülmektedir. Temel iki taraflı vücut formu, ağızdan anüse uzanan içi boş bir bağırsak boşluğuna sahip bir tüp ve ön tarafında özellikle büyük bir ganglion bulunan bir sinir kordonudur, buna "beyin" denir.

Her bir spinal sinir tarafından innerve edilen insan vücudu yüzeyinin alanı

İnsanlar da dahil olmak üzere memeliler dahi, sinir sistemi düzeyinde parçalı çift taraflı vücut planını gösterir. Omurilik, her biri vücut yüzeyinin bir kısmını innerve eden motor ve duyusal sinirlere yol açan bir dizi segmental gangliyon içerir ve alttaki kaslar. Ekstremitelerde innervasyon paterninin düzeni karmaşıktır, ancak gövdede bir dizi dar banda yol açar. İlk üç bölüm beyne aittir ve ön beyin, orta beyin ve arka beyine yol açar.[8]

Bilateriyenler, embriyonik gelişimin çok erken döneminde meydana gelen olaylara dayanarak, protostomlar ve deuterostomlar olarak adlandırılan iki gruba (üst şube) ayrılabilir. Deuterostomlar omurgalıların yanı sıra derisidikenlileri ve hemikordatları (esas olarak meşe palamudu solucanları) içerir. Daha çeşitli grup olan protostomlar, eklembacaklıları, yumuşakçaları ve sayısız solucan türünü içerir. Sinir sisteminin vücuttaki yerleşiminde iki grup arasında temel bir fark vardır: protostomlarda vücudun ventral (genellikle alt) tarafında bir sinir kordonu bulunurken, deuterostomlarda sinir kordonu dorsalde (genellikle üstte) bulunur.) yan. Aslında, dorsalden ventral gradyanlar gösteren birkaç genin ekspresyon paternleri de dahil olmak üzere, vücudun birçok yönü iki grup arasında ters çevrilmiştir. Bazı anatomistler şimdi, protostom ve deuterostom gövdelerinin birbirlerine göre "ters çevrildiğini" düşünüyorlar; bu, ilk olarak Geoffroy Saint-Hilaire tarafından böcekler için omurgalılara kıyasla önerilen bir hipotezdir. Bu nedenle, örneğin böcekler vücudun karın orta hattı boyunca uzanan sinir kordonlarına sahipken, tüm omurgalıların sırt orta hattı boyunca uzanan omurilikleri vardır.

Annelida

Solucanlar, vücudun uzunluğu boyunca uzanan ve kuyruk ve ağızda birleşen çift sinir kordonlarına sahiptir. Bu sinir kordonları, bir merdivenin basamakları gibi enine sinirlerle birbirine bağlanır. Bu enine sinirler, hayvanın iki tarafını koordine etmeye yardımcı olur. Baş ucundaki iki ganglion, basit bir beyne benzer şekilde çalışır. Hayvanın göz noktalarındaki fotoreseptörler, aydınlık ve karanlık hakkında duyusal bilgi sağlar.[9]

Nematoda

Çok küçük bir solucanın sinir sistemi, yuvarlak solucan Caenorhabditis elegans, sinaptik seviyeye kadar haritalandırılmıştır. Her nöron ve onun hücresel soyu kaydedilmiştir ve hepsi olmasa da çoğu nöral bağlantı bilinmektedir. Bu türde sinir sistemi cinsel olarak dimorfiktir; iki cinsiyetin, erkeklerin ve hermafroditlerin sinir sistemleri, cinsiyete özgü işlevleri yerine getiren farklı sayıda nörona ve nöron gruplarına sahiptir. C. elegans'ta erkeklerin tam olarak 383 nöronu varken, hermafroditlerin tam olarak 302 nöronu vardır.

Eklembacaklılar

Sinir sistemini maviyle gösteren bir örümceğin iç anatomisi

Eklembacaklılar gibi böcekler ve kabuklular, sinir sisteminin bir dizi yapılmış olması gangliyon ile bağlanmış, ventral sinir kablosunun uzunluğu boyunca uzanan iki paralel eklemlerin oluşan göbek .[10] Tipik olarak, her vücut segmentinin her iki tarafında bir ganglion bulunur, ancak bazı ganglionlar beyni ve diğer büyük gangliyonları oluşturmak için kaynaşmıştır. Baş segmenti, supraözofageal ganglion olarak da bilinen beyni içerir. Böcek sinir sisteminde beyin anatomik olarak protoserebrum, deutoserebrum ve tritoserebrum'a bölünmüştür . Beynin hemen arkasında, üç çift kaynaşmış gangliyondan oluşan subözofageal ganglion bulunur. Ağız kısımlarını, tükürük bezlerini ve bazı kasları kontrol eder . Birçok eklembacaklı, görme için bileşik gözler ve koku alma ve feromon hissi için antenler dahil olmak üzere iyi gelişmiş duyu organlarına sahiptir. Bu organlardan gelen duyusal bilgiler beyin tarafından işlenir.

Böceklerde birçok nöron, beynin kenarında konumlanmış ve elektriksel olarak pasif olan hücre gövdelerine sahiptir - hücre gövdeleri yalnızca metabolik destek sağlamaya hizmet eder ve sinyalleşmeye katılmaz. Protoplazmik bir lif hücre gövdesinden çıkar ve bolca dallanır, bazı kısımları sinyalleri iletir ve diğer kısımları sinyalleri alır. Bu nedenle, böcek beyninin çoğu parçası, çevre çevresinde düzenlenmiş pasif hücre gövdelerine sahipken, nöral sinyal işleme, iç kısımda, nöropil adı verilen bir protoplazmik lifler yumağı içinde gerçekleşir.[11]

Merkezi sinir sistemlerinin evrimi

İnsan beyninin evrimi

Modern insanın ataları, insanın evrim zaman çizelgesi boyunca (bkz. İnsanın evrimi) ilerledikçe, Homo habilis'te yaklaşık 600 cm³'ten Homo neanderthalensis'te 1736 cm³'e kadar, beyin hacminde kademeli bir artış olmuştur. Bu nedenle, genel olarak beyin hacmi ile zeka arasında bir ilişki vardır.[12] Bununla birlikte, modern Homo sapiens, neandertallerden daha küçük bir beyin hacmine (beyin boyutu 1250 cm³) sahiptir; kadınların beyin hacmi erkeklerden biraz daha küçüktür ve "hobbit" lakaplı Flores hominidlerinin (Homo floresiensis) kafatası kapasitesi yaklaşık 380 cm³, yani Homo erectus ortalamasının yaklaşık üçte biri kadardı ve bir şempanze için küçük kabul ediliyordu. Bir insular cücelik vakası olarak H. erectus'tan evrimleştikleri ileri sürülmektedir. Üç kat daha küçük beyinlerine rağmen, H. floresiensis'in ateş kullandığına ve önerilen ataları H. erectus kadar sofistike taş aletler yaptığına dair kanıtlar var.[13] Iain Davidson, insan beyni boyutundaki zıt evrimsel kısıtlamaları "İhtiyacınız olduğu kadar büyük ve olabildiğince küçük" olarak özetler.[14] İnsan beyni, türün varlığı boyunca uğraştığı metabolik, çevresel ve sosyal ihtiyaçlar etrafında gelişmiştir. İnsansı türler artan beyin boyutu ve işlem gücü ile evrimleştikçe, genel metabolik ihtiyaç arttı. Şempanzelerle karşılaştırıldığında, insanlar hayvanlardan bitkilerden daha fazla kalori tüketir. Kesin olmamakla birlikte, araştırmalar, diyetteki bu değişimin, hayvansal ürünlerde daha kolay bulunan yağ asitlerine artan ihtiyaçtan kaynaklandığını göstermiştir. Bu yağ asitleri beyin bakımı ve gelişimi için gereklidir. Göz önünde bulundurulması gereken diğer faktörler, sosyal etkileşim ihtiyacı ve hominidlerin zaman içinde çevreleriyle nasıl etkileşime girdiğidir.[15]

Beyin evrimi, paleonöroloji adı verilen bir nöroloji ve paleontoloji dalı olan endokastlar kullanılarak incelenebilir.

Ayrıca bakınız

Kaynakça

  1. ^ "nervous system | Definition, Function, Structure, & Facts". Encyclopedia Britannica (İngilizce). 13 Haziran 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 7 Nisan 2021. 
  2. ^ "Evolution of nervous systems". Neurobiology: molecules, cells, and systems. Wiley-Blackwell. 2001. s. 21. ISBN 978-0-632-04496-2. 
  3. ^ Burkhardt (1 Eylül 2017). "Evolutionary origin of synapses and neurons - Bridging the gap". BioEssays. 39 (10): 1700024. doi:10.1002/bies.201700024. ISSN 0265-9247. PMID 28863228. 
  4. ^ Dawn of the Neuron: The Early Struggles to Trace the Origin of Nervous Systems. Montreal & Kingston, London, Chicago: McGill-Queen's University Press. 2015. ISBN 978-0-7735-4571-7. 
  5. ^ Leys (15 Şubat 2015). "Elements of a 'nervous system' in sponges". Journal of Experimental Biology (İngilizce). 218 (4): 581-591. doi:10.1242/jeb.110817. ISSN 0022-0949. PMID 25696821. 20 Kasım 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 26 Haziran 2021. 
  6. ^ Ruppert, Edward E.; Fox, Richard S.; Barnes, Robert D. (2004). Invertebrate zoology : a functional evolutionary approach. Internet Archive. Belmont, CA : Thomson-Brooks/Cole. ISBN 978-0-03-025982-1. 
  7. ^ Development of the nervous system. Academic Press. 2006. ss. 3-4. ISBN 978-0-12-618621-5. 
  8. ^ Ghysen A (2003). "The origin and evolution of the nervous system". Int. J. Dev. Biol. 47 (7–8): 555-62. PMID 14756331. 19 Haziran 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 26 Haziran 2021. 
  9. ^ ADEY WR (February 1951). "The nervous system of the earthworm Megascolex". J. Comp. Neurol. 94 (1): 57-103. doi:10.1002/cne.900940104. PMID 14814220. 
  10. ^ "Ch. 20: Nervous system". The insects: structure and function. Cambridge University Press. 1998. ss. 533-568. ISBN 978-0-521-57890-5. 
  11. ^ Chapman, p. 546
  12. ^ Ko (2016). "Origins of human intelligence: The chain of tool-making and brain evolution" (PDF). Anthropological Notebooks. 22 (1): 5-22. 17 Ağustos 2016 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 26 Haziran 2021. 
  13. ^ "A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia". Nature. 431 (7012): 1055-61. 2004. doi:10.1038/nature02999. PMID 15514638. 
  14. ^ Davidson. "As large as you need and as small as you can'--implications of the brain size of Homo floresiensis, (Iain Davidson)". Une-au.academia.edu. 25 Nisan 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 30 Ekim 2011. 
  15. ^ "4.04 - Energetics, Life History, and Human Brain Evolution", Evolution of Nervous Systems (Second Edition) (İngilizce), Oxford: Academic Press, 1 Ocak 2017, ss. 51-62, ISBN 978-0-12-804096-6, 26 Haziran 2021 tarihinde kaynağından arşivlendi, erişim tarihi: 7 Nisan 2021  Birden fazla editör-name-list parameters kullanıldı (yardım); r |ad1= eksik |soyadı1= (yardım)

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Omurilik</span> Merkezî sinir sisteminin bir parçası

Omurilik, omurga denilen kemik bir yapının içinde boyundan kuyruk sokumuna kadar uzanan ve ortasında yine boydan boya bir kanal içeren merkezî sinir sisteminin bir parçasıdır.

<span class="mw-page-title-main">Beyin</span> vücudumuzun kontrolünü sağlayan sinir sisteminin merkezi beyin

Beyin , sinir sisteminin merkezi olarak hizmet eden bir organıdır. Bütün omurgalı hayvanlar ve çoğu omurgasız hayvan -bazı süngerler, knidliler, tulumlular ve derisi dikenliler gibi omurgasızlar hariç- beyne sahiptir. Baş kısmında; duyma, tatma, görme, denge, koklama gibi duyulara hizmet eden organlara yakın bir noktada bulunan beyin omurgalıların vücudundaki en karmaşık organdır. Normal bir insanda serebral korteksin 15-33 milyar nörondan müteşekkil olduğu tahmin edilmektedir. Her biri birkaç bin nöronla sinaps denen bağlantılar yardımıyla bağlıdır. Bu nöronlar birbirleriyle akson denen uzun protoplazmik lifler yardımıyla iletişim kurar. Aksonlar bilgiyi beynin diğer kısımlarına yahut vücudun spesifik alıcı hücrelerine taşır.

<span class="mw-page-title-main">Yapay sinir ağları</span>

Yapay sinir ağları (YSA), insan beyninin bilgi işleme tekniğinden esinlenerek geliştirilmiş bir bilgi işlem teknolojisidir. YSA ile basit biyolojik sinir sisteminin çalışma şekli taklit edilir. Yani biyolojik nöron hücrelerinin ve bu hücrelerin birbirleri ile arasında kurduğu sinaptik bağın dijital olarak modellenmesidir. Nöronlar çeşitli şekillerde birbirlerine bağlanarak ağlar oluştururlar. Bu ağlar öğrenme, hafızaya alma ve veriler arasındaki ilişkiyi ortaya çıkarma kapasitesine sahiptirler. Diğer bir ifadeyle, YSA'lar, normalde bir insanın düşünme ve gözlemlemeye yönelik doğal yeteneklerini gerektiren problemlere çözüm üretmektedir. Bir insanın, düşünme ve gözlemleme yeteneklerini gerektiren problemlere yönelik çözümler üretebilmesinin temel sebebi ise insan beyninin ve dolayısıyla insanın sahip olduğu yaşayarak veya deneyerek öğrenme yeteneğidir.

Retina (latince:rete) ya da ağkatman çoğu omurgalı ve bazı yumuşakçaların gözünün en içindeki görmeyi sağlayan ışığa ve renge duyarlı hücrelerin bulunduğu göz doku tabakasıdır. Gözün optiği, retinadaki görsel dünyanın odaklanmış iki boyutlu bir görüntü oluşturur ve bu görüntüyü beyne elektriksel sinir uyarılarına çevirerek görsel algı oluşturur. Retina, bir kameradaki film veya görüntü sensörü 'ne benzer bir iş yapar.

<span class="mw-page-title-main">Sinir sistemi</span> dış çevre ile eylemleri koordine etmekten ve vücudun farklı bölümleri arasında hızlı iletişimden sorumlu canlı biyolojik sistemi

Sinir sistemi veya sinir ağı, canlıların içsel ve dışsal çevresini algılamasına yol açan, bilgi elde eden ve elde edilen bilgiyi işleyen, vücut içerisinde hücreler ağı sayesinde sinyallerin farklı bölgelere iletimini sağlayan, organların, kasların aktivitelerini düzenleyen bir organ sistemidir. Sinir sistemi iki bölümden oluşur: Merkezî sinir sistemi (MSS) ve çevresel sinir sistemi (ÇSS). MSS, beyin ve omurilikten oluşur. ÇSS, MSS'yi vücudun diğer tüm kısımları ile bağlayan uzun fiberlerden oluşur. ÇSS, motor nöronları, dolaylı istemli hareket, otonom sinir sistemi, sempatik sinir sistemi, parasempatik sinir sistemi, düzenli istemsiz işlevler ve enterik sinir sisteminden oluşur.

<span class="mw-page-title-main">Sinaps</span>

Sinaps, nöronların diğer nöronlara ya da kas veya salgı bezleri gibi nöron olmayan hücrelere mesaj iletmesine olanak tanıyan özelleşmiş bağlantı noktaları. Bir motor nöron ile kas hücresi arasındaki kimyasal sinaps, aynı zamanda neuromuscular junction nöromusküler bağlantı olarak adlandırılır.

<span class="mw-page-title-main">Sinir hücresi</span> sinapslar aracılığıyla iletişim kuran ve elektrik ile uyarılabilen hücre

Sinir hücresi ya da nöron sinir sisteminin temel fonksiyonel birimidir. Başlıca işlevi bilgi transferini gerçekleştirmektir. İnsan sinir sisteminde yaklaşık olarak 100 milyar nöron olduğu tahmin edilmektedir. Normal bir sinir hücresi 50.000'den 250.000'e kadar başka nöronlarla bağlantılıdır. Yaptıkları özelleşmiş işlere bağlı olarak farklı şekillerde ve çeşitlerde olabilirler. Nöronların büyük çoğunluğu dört farklı yapıya sahiptir: Soma, dendritler, akson ve terminal butonlar. Soma bölgesinde çekirdek (nucleus) ve hücrenin yaşamsal işlevlerini sağlayan mekanizma bulunur. Dendiritler ise isimlerini Yunanca bir sözcük olan dendrondan almışlardır. Bu şekilde isimlendirilmelerinin sebebi şekillerinin bir ağaca benzemesidir. Dendiritler nöral iletişimin önemli alıcılarıdır. Bir nörondan diğerine geçen mesajlar, mesajı yollayan hücrenin terminal butonlarıyla mesajı alan hücrenin dendirit membranı ya da soma bölümü arasındaki birleşme yerleri olan sinapslar aracılığıyla iletilir/transfer edilir. Sinapslar işlevlerinden yola çıkılarak isimlerini Yunancada "bir araya gelmek" anlamındaki sunaptein sözcüğünden almışlardır. Sinapstaki iletişim terminal butondan öteki hücrenin membranına kadar olmak üzere tek yönlü bir şekilde gerçekleşir. Nöronun bir diğer bölümü olan akson, çoğu kez miyelin kılıfı ile kaplı uzun ve ince bir tüp şeklindedir. Aksonun temel işlevi bilgiyi hücre gövdesinden terminal butonlara taşımaktır. Aksonun taşıdığı bu temel mesaj aksiyon potansiyeli olarak adlandırılır. Aksiyon potansiyeli, kısa bir nabız atışına benzeyen elektriksel/kimyasal bir olaydır. Bütün aksonlardaki aksiyon potansiyeli her zaman aynı ölçüde ve hızdadır. Aksiyon potansiyeli aksonun dallarına ulaştığında bölünmesine rağmen ölçüsünü kaybetmez. Başka bir deyişle her akson dalı tam gücüyle bir aksiyon potansiyeli alır. Nöronlar aksonların ve dendiritlerin somadan çıkışlarına göre üçe ayrılır. Bunlardan multipolar nöron merkezi sinir sisteminde en çok bulunan bilindik nöron tipidir. Bu tip nöronlar sadece bir akson çıkışına sahipken çok sayıda dendirite sahiptir. Bipolar nöronlar bir akson ve bir dendirit ağacına sahiptir. Duyusal nöronlar genellikle bipolar nöronlardır. Bipolar nöronların dendiritleri duyusal verileri merkezi sinir sistemine iletirler. Diğer tip sinir hücreleri ise unipolar nöronlardır. Bu nöronların hücre gövdesinden çıkan ve kısa mesafede ayrılan tek bir sapı vardır. Unipolar nöronlar da bipolar nöronların yaptığı gibi duyusal verileri merkezi sinir sistemine taşımakla görevlidir. Terminal butonlar aksonların ince dallarının ucunda bulunan küçük yumrulardır. Terminal butonlar bir aksiyon potansiyeli onlara ulaştığında, nörotransmitter adı verilen kimyasalları salıverir. Nörotransmitterler alıcı hücreyi uyarır (excitation) veya engeller (inhibition). Bu şekilde diğer hücrenin aksonunda bir aksiyon potansiyeli oluşup oluşmayacağını belirler.

<span class="mw-page-title-main">İnsan beyni</span> insan sinir sisteminin ana organı

İnsan beyni, insan sinir sisteminin merkezi organıdır ve omurilikle birlikte merkezi sinir sistemini oluşturur.

Somatik sinir sistemi (SSS), çevresel sinir sisteminin bir bölümüdür. Vücut hareketinin çizgili kas vasıtasıyla istemli kontrolünü sağlar. SSS, kas kasılmasını uyarmak için motor sinir lifinden oluşur. Bunlara iskelet kaslarına ve deriye bağlanan, duyusal olmayan sinir hücreleri de dahildir.

Beyin-bilgisayar arayüzü veya zihin-makine arayüzü veya beyin-makine arayüzü, beyin ile dış bir cihaz arasındaki doğrudan iletişim yoludur. Beyin-bilgisayar arayüzü genellikle insanoğlunun bilişsel veya duyusal motor fonksiyonlarına yardımcı olmak veya onları tamir etmek için kullanılır.

<span class="mw-page-title-main">Akson</span> Nöronun elektriksel uyarıları ileten uzun kısmı

Akson, bir sinir lifi olarak da bilinir, bir sinir hücresinin (nöronun) ince, uzun bir çıkıntısıdır. Sinir hücresinin gövdesindeki elektriksel uyarıları uzağa iletir. Aksonun işlevi bilgiyi farklı sinir hücrelerine, kaslara, bezlere iletmektir. Dokunmak ve sıcaklık algılama işlemlerini gerçekleştiren Pseudounipolar nöronlar gibi bazı duyu nöronlarında, elektriksel uyarılar, aksonun çeperinden hücrenin gövdesine doğru, oradan da aynı aksonun başka dalları vasıtasıyla omuriliğe gönderilir. Akson uyumsuzluğu, kalıtsal ve edinsel nörolojik hastalıklara neden olabilir. Bu hastalıklar hem merkezi hem de çevresel sinir sistemlerindeki nöronları etkileyebilir.

<span class="mw-page-title-main">Sinir dokusu</span>

Sinir dokusu, sinir sisteminin ana bileşenidir - beyin, omurilik ve sinirler - vücut işlevlerinin ayarlar ve kontrol eder. Uyartıları (impuls) ileten sinir hücrelerinden (nöron) ve sinir uyartılarının yayılmasına yardımcı olan ve nöronlara besin taşıyan nöroglialardan oluşmuştur.

<span class="mw-page-title-main">Akson ucu</span>

Akson uçları , bir aksonun dallarındaki distal uçlardır. Akson sinir lifi, sinir hücresinin (nöron) ince uzun bir çıkıntısıdır. Bu lif, aksiyon potansiyel olarak adlandırılan elektriksel uyartıları, sinir hücresinin gövdesinden (soma), diğer sinir hücrelerine iletir.

Nörolojide motor nöron terimi merkezi sinir sisteminde (MSS) bulunan sinir hücrelerini (nöron) sınıflandırır ve kasları doğrudan veya dolaylı olarak kontrol eder. MSS'deki aksonlar bilgiyi diğer sinir hücrelerine iletir. Motor nöronlar, hareketi gerçekleştirmek için omurilikten kaslara sinyal iletirler.

<span class="mw-page-title-main">Üst motor nöron</span>

Üst motor nöronlar (ÜMN), serebral korteks veya beyinsapının motor bölgesinde meydana gelen bir tür motor nörondur ve motor bilgisini son ortak ağa taşır. Bunlar hedef kası doğrudan uyarmakla sorumlu değildir. Ana motor nöronlar istemli hareket sağlar, primer motor korteksin katman V içinde uzanır ve Betz hücreleri olarak adlandırılır. Bu sinir hücrelerinin hücre gövdeleri, beyindeki en büyük gövdelerden bazılarıdır ve yaklaşık 100 μm çapındadır.

<span class="mw-page-title-main">Sinir</span> periferik sinir sistemindeki kapalı, kablo benzeri akson demeti

Sinir, çevresel sinir sistemindeki kapalı, kablo benzeri sinir lifleri demetidir.

<span class="mw-page-title-main">Trigeminal sinir</span>

Trigeminal sinir, on iki kraniyal sinirden beşincisi ve en büyüğü. Yüzdeki hissiyatı ve ısırma, çiğneme gibi hareketleri sağlar. Oftalmik sinir, maksiler sinir ve mandibuler sinir olmak üzere üç sinire bölünür.

Getiren sinir lifleri, bir bölgeye gelen akson demetlerine denir. Sinir lifleri bölgeden çıkış yaptığında bu akson demetine götüren sinir demeti adı verilir. Bu terimler çevresel sinir sistemi (ÇSS) ve merkezi sinir sistemi (MSS) için kullanıldığında biraz farklı anlam taşırlar.

<span class="mw-page-title-main">Ara sinir</span> Fasiyal sinirin bir dalı

Ara sinir, fasiyal sinirin bir dalı olup fasiyal sinirinin motor komponenti ile vestibulokoklear sinir arasında yer alır.Fasiyal sinirin duyusal ve parasempatik liflerini içerir. Fasiyal kanala ulaştığında, genikulat gangliondaki fasiyal sinirin motor kökü ile birleşir. Alex Alfieri, ara sinirin fasiyal sinirin bir parçası değil, ayrı bir kraniyal sinir olarak değerlendirilmesi gerektiğini öne sürmektedir.

Beynin evrimi sürecinde etkili olan ilkelerle ilgili belirsizlikler günümüzde hala çözülememiştir. Beyin-vücut oranı allometrik olarak ölçeklenir. Küçük vücutlu memeliler vücutlarına kıyasla nispeten büyük beyinlere sahipken, büyük memeliler daha küçük beyin-vücut oranlarına sahiptir. Primatların beyin ağırlıklarının vücut ağırlıklarına oranları, primat türünün beyin gücünü yönelik fikir verebilmektedir. İnsanlarda bu oran diğer primat türlerine göre çok daha yüksektir, bu da insanların beyin kitle indeksinin diğer primatlara göre daha yüksek olduğunu gösterir.