İçeriğe atla

İç içe kökler

Matematikte iç içe kökler kök içinde köklü ifadelerin bulunması durumudur.

İç içe sonsuz kökler

genel denklemi için:

yandaki denklemde her iki tarafın n dereceden kökü alınırsa şeklinde düzendi.

denkleminde sol tarafta x ve sağ tarafta kökün içinde x vardır. Her ikisi de x tir. Sol taraftaki x kök içindeki kökün içine bir defa yazılırsa olur.

İki defa yazılırsa olur. Burada -x/a ve -b/a şeklinde bir tekrarlanma var.

Sol taraftaki x kök içindeki kökün sonsuz defa yazılırsa : şeklinde bir içe sonsuz kökler meydana gelir. İç içe sonsuz köklerin kaynağı buradan gelmektedir.

Bunun tersi de doğrudur. Birinci kökün içindeki -b/a nın çarpım durumunda olan köklü ifadeye denilirse elde edilir.

Çünkü : içe içe sonsuz kökün her tarafın n ninci kuvveti alınırsa
şeklinde olur işleme devam edilirse oldu sağ taraftaki ifade zaten x e eşitti. ve ispat tamamlanmış olur.

Genel Sonuç : dir.

Eğer denklem şeklinde ise : Burada c sabit sayısı yoktur.

şekline dönüşür. Sol taraftaki x kök içindeki x yerine bir defa yazılırsa olur. İki defa yazılırsa şeklinde olur. Burada içe içe kök içinde -b/a lar devam eder. Bu işlem sonsuz defa uygulanırsa iç içe sonsuz kökler meydana gelir. şeklinde sonsuza gider. Bunun tersi de doğrudur.

Tersi için denkleminin her iki tarafının n dereceden kuvveti yani üssü alınırsa devam edilirse bu denklemde ise sağ taraf x e eşitti. yerine x yazılırsa olur. Bu denklem düzenlenirse denklemi elde edilir. denkleminde Şimdi iç içe köklü ifadelerin içindeki ikinci köklü ifadeye neden x denildiği ispatlandı.

Genel Sonuç 2 : ve olur.

Genel Sonuç 2 için ikinci yol: bu ifadede c=0 alınırsa sonuç 2 : yine elde edilir. Çünkü c=0 olması durumunda denkleminde artık sabit sayı olmaz.

şeklinde olur.

Bölüm durumundaki iç içe sonsuz kökler

İspatlar dan sonra bir ispat daha

şeklinde gösterilen iç içe kökler denir. işlemin sonucuna m denilirse şeklinde bir denkleme dönüşür. (Çünkü ikinci köklü ifadede sezgisel olarak m ye eşit oluyor.İspatı yukarıda yapıldı) olur işleme devam edilirse eşit olur. Her iki tarafın dereceden kökü alınırsa eşit olur. eşitti. O zaman eşitliğinde doğrudur.

Genel sonuç 3

İkinci dereceden denklemin iç içe köklerle ilişkisi

Yukarıda ispatlar yapıldı. Genel iç içe kökler oluşturuldu.

denkleminde eşitti. alınması durumunda denklemi ve oluşur.

Sonuç olarak eşittir.

İkinci dereceden denklemin bir kökü dır. O zaman x ler aynı olduğundan eşitleme yapılır. eşitliği yazılabilir. Burada dikkat edilmesi gereken nokta iç içe köklü ifadenin pozitif bir sonucu olması. Negatif sonuçlar çözüm kümesine alınamaz. (Bir ispat daha yapıldı.)

İkinci dereceden denklemde sabit sayı yok ise :

şeklinde bir denklem oluşur. Yandaki denklem denkleminin için özel bir durumudur. denkleminde eşitti. Burada için

olur. x ler eşit olduğundan dolayı eşitliği yazılabilir.

Sonuç 1

eşittir.

ve dönüşümleri yapılırsa: işleme devam edilirse

eşitliğine dönüşür. Daha da düzenlisi her iki tarafı ile çarpılırsa iç içe Karekökler genel sonucu olur. Burada olduğuna dikkat ediniz.

Sonuç 2

dönüşümü yapılırsa: olur.

İç içe kökler

,

şeklinde olan köklere iç içe kökler denir.

Kökler üssü ifadelerin kesirli biçimidir.

şeklindeki ifade üssü sayıların bir özelliğidir. İç içe köklerde aynı şekildedir. Kök sembolü aslında kesirli üsler için özel bir parantezdir. Aslında aynılar.

En önemli özelliği : bu ifade köklü ifadeleri ve üslü ifadeleri birbirine bağlayan bir eşitliktir. Bu özellikten yola çıkarak şeklindeki ifadeyi üssü ifadeye çevirmek mümkün.

burada ilk olarak şeklinde olur. Devam edilirse aynı şekilde şeklinde olur. özelliği uygulanırsa olur.

Sıra ifadesinde biçimine dönüşür. Bu da aynı şekilde olur.Aynı özellik uygulanırsa sonucuna ulaşılır. ifadesi formundada yazılabilir.

Sonuç

A-) köklü ifadesi için denilirse her iki tarafın karesi alınırsa şekline dönüşür.

ifadesinin her iki tarafının karekökü alınırsa şeklinde olur. denilmişti. O zaman eşitliği olur.

Sonuç

B-)

ise denilirse her iki tarafın karesi alınırsa şekline dönüşür.

ifadesinin her iki tarafının karekökü alınırsa şeklinde olur. denilmişti. O zaman eşitliği olur.

Sonuç

Not: Bu işlemler ispata dayalıdır. İçerisinde ezbere dayalı bir işlem yoktur. Tamamen mantık üzerinedir.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

Aşağıdaki liste rasyonel fonksiyonların integrallerini vermektedir

<span class="mw-page-title-main">Parabol</span> ikinci dereceden olan fonksiyonların grafiği

Parabol, bir düzlemde alınan sabit bir "d" doğrusu ile sabit bir "F" noktasından eşit uzaklıktaki noktaların geometrik yerleştirilmesidir. Cebirde ise y=ax2+bx+c şeklindeki ikinci derece fonksiyonları grafiği olarak bilinir.

<span class="mw-page-title-main">Karekök</span>

Matematikte negatif olmayan bir gerçel sayısının temel karekök bulma işlemi şeklinde gösterilir ve karesi (bir sayının kendisiyle çarpılmasının sonucu) olan negatif olmayan bir gerçek sayıyı ifade eder.

Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. a ve b sayıları gerçek olursa karmaşık sayılar şu biçimde gösterilirler:

<span class="mw-page-title-main">Doğrusal denklem</span>

Doğrusal ya da lineer denklem terimlerinin her biri ya birinci dereceden değişken ya da bir sabit olan denklemlerdir. Böyle denklemlere "doğrusal" denmesinin nedeni içerdikleri terim ve değişkenlerin sayısına bağlı olarak (n) düzlemde ya da uzayda bir doğru belirtmesindendir. Doğrusal denklemlerin en yaygını bir ve değişkeni içeren aşağıdaki formdur:

<span class="mw-page-title-main">İkinci dereceden denklemler</span>

İkinci dereceden denklemler, derecesi 2 olan polinomların oluşturduğu denklemlerdir. Bu denklemlerin genel formu aşağıdaki gibidir

<span class="mw-page-title-main">Diskriminant</span>

Diskriminant matematik biliminde bir cebirsel kavramdır. Gerçel katsayılı ikinci derece polinom denklemlerin çözümü için kullanılır. İkinci dereceden büyük herhangi bir polinomun köklerinin bulunması için de bu kavram, köklerin toplamı için gereken ifadenin ve köklerin çarpımı için gereken ifadenin bulunması suretiyle genişletilmiştir. Bir polinom için çoklu köklerin varlığı veya yokluğu için gereken koşul da diskriminantın varlığı ve yokluğu ile bulunabilmektedir.

İstatistik bilim dalında ağırlıklı ortalama betimsel istatistik alanında, genellikle örneklem, veri dizisini özetlemek için bir merkezsel konum ölçüsüdür. En çok kullanan ağırlıklı ortalama tipi ağırlıklı aritmetik ortalamadır. Burada genel olarak bir örnekle bu kavram açıklanmaktadır. Değişik özel tipli ağırlıklar alan özel ağırlıklı aritmetik ortalamalar bulunmaktadır. Diğer ağırlıklı ortalamalar ağırlıklı geometrik ortalama ve ağırlıklı harmonik ortalamadir. Ağırlıklı ortalama kavramı ile ilişkili teorik açıklamalar son kısımda ele alınacakdır.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

Gauss integrali, Euler–Poisson integrali olarak da bilinir, tüm reel sayılardaki ex2 Gauss fonksiyonunun integralidir. Alman matematik ve fizikçi Carl Friedrich Gauss'dan sonra adlandırlıdı. İntegrali şöyledir:

<span class="mw-page-title-main">Ters fonksiyon</span>

Matematikte ters fonksiyon, bir fonksiyonun görüntü kümesinden alınan herhangi bir elemanını tanım kümesindeki aslına gönderen fonksiyona denir. Bir fonksiyonun tersi, fonksiyon birebir ve örten ise tanımlı olabilir. Ters fonksiyon ile gösterilir. Ancak yalnızca bir gösterim olup, "f(x) fonksiyonunun çarpmaya göre tersi" ile karıştırılmamalıdır.

Matematiksel safsata, aslında ilk bakışta ispatlanmış gibi görünmesine rağmen incelendiğinde hatalı şekilde ispatlandığı ve aslında doğru olmadığı görülen yanılgılardır.

<span class="mw-page-title-main">Çevrel çember</span>

Çevrel çember, geometride, bir çokgenin tüm köşelerinden geçen çember. Bu çemberin merkezi çevrel özek olarak isimlendirilir.

Matematikte, Lambert W fonksiyonu, aynı zamanda Omega fonksiyonu veya çarpım logaritması olarak da bilinen bir fonksiyon kümesidir.

Matematiksel analizde Legendre fonksiyonları, aşağıdaki Legendre diferansiyel denkleminin çözümleridir.

 ;
<span class="mw-page-title-main">Gauss fonksiyonu</span>

Matematikte Gauss fonksiyonu, bir fonksiyon biçimidir ve şöyle ifade edilir:

Üçüncü dereceden denklemler, derecesi 3 olan polinomların oluşturduğu denklemlerdir. Bu denklemlerin genel formu aşağıdaki gibidir

Montgomery Eğrisi Peter L. Montgomery tarafından 1987'de tanımlanmış, klasik Weierstrass formundan farklı bir eliptik eğri formudur. Belirli hesaplamalar için ve özellikle farklı kriptografi uygulamalarında kullanılır.

<span class="mw-page-title-main">Kuadratik formül</span>

Temel cebirde, kuadratik formül, bir ikinci dereceden denklemin köklerini (çözümlerini) bulan bir formüldür. İkinci dereceden bir denklemi çözmek için ikinci dereceden formülü kullanmak yerine çarpanlara ayırma, tam kareye tamamlama, grafik çizme ve diğerleri gibi başka yollar da vardır.