İçeriğe atla

İlksel yerçekimi dalgaları

Fizikte ilksel yerçekim dalgaları, kozmik mikrodalga kaynaklı olarak gözlemlenmiştir ve ilksel yerçekimi dalgalarının kökeni evrenin başlangıcına kadar uzanmaktadır. Kozmik inflation modeline göre bu tür yerçekimsel dalgaların görülebilir olması gerektiği tahmin edilmiştir ve bu dalgaların belirlenmesi büyüme teorisini desteklemektedir ve onun kabul edilebilirliğini güçlendirmekle birlikte başka bir büyüme modeli teorisinin gerçek olma olasılığını yok etmektedir.

2014 yılının mart ayında elde edilen raporlara göre BICEP2 aleti evrenin ilk oluşumundan kaynaklanan yerçekimsel dalgaların B-Modes olanlarını tespit etmiştir. 17 Mart 2014 tarihinde bu bilgiler doğrultusunda the Harvard-Smithsonian Center for Astrophysics tarafından yapılan açıklamada BICEP2 aletinin B-Modes'un r= 0.20+0.07 seviyesinden olan dalgalarını tespit edebilmişlerdir. -0.05,null hipotezini (r=0) gözden düşürmekle birlikte 7 sigma seviyesindeki çıkarımı öne sürmüştür (5.9σ).

19 Temmuz 2014'te yeni yapılan ve rapor edilen buluşlara rağmen tam bir güven sağlanamamıştır. 19 Eylül 2014'te Plank deneyinde rapor edilen yeni sonuçlara göre BICEP2'den alınan tüm sonuçlar kozmik toz olarak kabul edilebilirdi.

Ekim 2014'te the POLARBEAR deneyinde yapılan 150 GHz deki B-Mode polarizasyonu ölçümleri yayımlanmıştır. BICEP2 ile kıyaslandırıldığında POLARBEAR gökün daha küçük bir parçasına odaklanmış ve kozmik tozların olma olasılığı daha gözden çıkarılabilirdi. POLARBEAR takımının verdiği raporda B-mode polarizasyonunda yapılan ölçümler kozmolojik başlangıç noktasını %97,2 oranındaki güvenilirlilik sonuçları ile onaylamaktaydı.

Kaynakça

  • Y  Staff (17 March 2014). "BICEP2 2014 Results Release". National Science Foundation. Retrieved 18 March 2014.
  • Y  Overbye, Dennis (19 June 2014). "Astronomers Hedge on Big Bang Detection Claim". New York Times. Retrieved 20 June 2014.
  • Y  Amos, Jonathan (19 June 2014). "Cosmic inflation: Confidence lowered for Big Bang signal". BBC News. Retrieved 20 June 2014.
  • Y  Ade, P.A.R. et al (BICEP2 Collaboration) (19 June 2014). "Detection of B-Mode Polarization at Degree Angular Scales by BICEP2". Physical Review Letters 112: 241101. arXiv:1403.3985.Bibcode:2014PhRvL.112x1101A. doi:10.1103/PhysRevLett.112.241101.
  • Y  Overbye, Dennis (22 September 2014). "Study Confirms Criticism of Big Bang Finding". New York Times. Retrieved 22 September 2014.
  • Y  The Polarbear Collaboration (October 2014). "A Measurement of the Cosmic Microwave Background B-Mode Polarization Power Spectrum at Sub-Degree Scales with POLARBEAR" (PDF).The Astrophysical Journal. Bibcode:2014ApJ...794..171T. doi:10.1088/0004-637X/794/2/171. Retrieved November 16, 2014.
  • Y  "POLARBEAR project offers clues about origin of universe's cosmic growth spurt". Christian Science Monitor. October 21, 2014.
  • İngilizce Wikipedi

Dış bağlantılar

İlgili Araştırma Makaleleri

Kütleçekim ya da çekim kuvveti, kütleli her şeyin gezegenler, yıldızlar ve galaksiler de dahil olmak üzere birbirine doğru hareket ettiği doğal bir fenomendir. Enerji ve kütle eşdeğer olduğu için ışık da dahil olmak üzere her türlü enerji kütleçekime neden olur ve onun etkisi altındadır.

<span class="mw-page-title-main">Evren</span> uzay, zaman ve herşeyin bütünü

Evren, Kâinat veya Kozmos, gezegenler, yıldızlar, gökadalar ve diğer tüm madde ile enerji yapıları dahil olmak üzere uzay ve zamanın tamamı ve muhtevasıdır. Bununla birlikte gözlemlenebilir evren, temel parçacıklardan başlayarak gökadalar ve gökada kümeleri gibi büyük ölçekli yapılara kadar tüm madde ve enerjinin mevcut düzeniyle sınırlıdır.

<span class="mw-page-title-main">Büyük Patlama</span> Evrenin oluştuğunu açıklayan teori

Büyük patlama, evrenin en eski 13,8 milyar yıl önce tekillik noktası denilen bir noktadan itibaren genişlediğini varsayan evrenin evrimi kuramı ve geniş şekilde kabul gören kozmolojik modeldir. İlk kez 1920'li yıllarda Rus kozmolog ve matematikçi Alexander Friedmann ve Belçikalı fizikçi papaz Georges Lemaître tarafından ortaya atılan bu teori, çeşitli kanıtlarla desteklendiğinden bilim insanları arasında, özellikle fizikçiler arasında geniş ölçüde kabul görmüştür.

<span class="mw-page-title-main">Uzay</span> Gök cisimleri arasındaki boşluk

Uzay veya dış uzay, Dünya atmosferinin ötesinde ve gök cisimleri arasında var olan genişliktir. Uzay düşüncelerin aksine tamamıyla boş bir alan değildir; son derece düşük parçacık yoğunlukları içerir ve ağırlıklı olarak hidrojen, helyum ve plazma, ayrıca elektromanyetik radyasyon, manyetik alanlar, nötrinolar, Kozmik toz ve kozmik ışınlar içeren neredeyse mükemmel bir vakum oluşturur.

<span class="mw-page-title-main">Gözlemlenebilir evren</span> evrenin Dünyadan gözlemlenebilen kısmı

Gözlemlenebilir evren, evrenin ışık ve başka sinyallerin galaksiler ve maddenin, kozmolojik genişlemeden beri Dünya’ya ulaşacak zamanı bulması sonucu, şimdiki zamanda Dünya'dan gözlemlenebilen cisim ve maddelerden oluşan bölgesidir. Evrenin izotropik olduğu varsayılırsa, gözlemlenebilir evrenin sınırı, her yönde aşağı yukarı aynıdır. Dolayısıyla, gözlemlenebilir evren, gözlemcisini merkeze alan, küresel bir hacme sahiptir. Evrendeki her nokta kendi gözlemlenebilir evrenine sahiptir ve bu evren Dünya merkezli olanla çakışıyor olabilir de, olmayabilir de.

<span class="mw-page-title-main">Büyük Patlama kronolojisi</span>

Büyük Patlama Kronolojisi, Evrenin kronolojisi büyük patlama kozmolojisine göre evrenin geçmiş ve geleceğini tanımlar. Planck çağından beri evrenin egemen bilimsel modellere göre nasıl geliştiğini kozmolojik koordinatların zaman parametrelerini kullanarak açıklar. Evren'in genişlemesinin 13,8 milyar yıl önce başlamış olduğu tahmin edilmektedir. Evrenin kronolojisini özetlemek için 4 ana parçaya ayırmak uygundur.

<span class="mw-page-title-main">Van Allen kuşağı</span>

Van Allen Kuşakları, Güneş'ten ve diğer yıldızlardan yayılan zararlı ışınlara karşı kalkan işlevi gören tabakadır. Bu tabaka manyetizma sonucunda ortaya çıkmakta, Dünya'nın manyetik alanından kaynaklanmaktadır.

<span class="mw-page-title-main">Kozmik toz</span>

Kozmik toz, uzayda var olan bir tozdur. Çoğu kozmik toz parçacığı, mikrometeoroitlerde olduğu gibi birkaç molekül ile 0,1 mm (100 µm) arasında ölçülür. Daha büyük parçacıklara ise meteoroit denir. Uzaydaki tüm tozun küçük bir kısmı yıldızların bıraktığı yoğunlaşmış maddeler gibi daha büyük ateşe dayanıklı mineraller içerir. Buna yıldız tozu denir. Yerel yıldızlararası ortam olan Yerel Kabarcığın toz yoğunluğu ortalama 10-6 x toz parçacığı/m³ 'tür ve her toz parçacığı yaklaşık 10–17 kg'lık bir kütleye sahiptir.

Fizikte çözülememiş ana problemler teoriktir. Başka bir ifadeyle mevcut teoriler, gözlenmiş bir fenomeni veya deneysel sonucu açıklayamamaktadır. Başkaları deneysel olup önerilmiş bir teorinin doğruluğunu test etmede ya da bir fenomenin daha detaylı incelenmesinde karşılaşılan zorluklardır.

<span class="mw-page-title-main">Enflasyon (kozmoloji)</span> Kozmolojide erken evrendeki uzayın üstsel genişlemesi üzerine teori

Evrensel şişme, kozmik enflasyon veya kozmolojik enflasyon, evren biliminde erken evrendeki uzayın üstsel genişlemesiyle ilgili bir teoridir. Enflasyona maruz kalınan çağ büyük patlamadan 10−36 saniye sonra 10−33 ile 10−32 saniyeleri arasında sürdü. Sonraki dönemde, evren genişlemeye devam etti ancak genişleme oranı düştü.

Big Bang kozmolojisinde reiyonizasyon, evrendeki “karanlık dönem”den sonra maddeyi reiyonize eden süreçtir ve büyük faz geçişinden ikincisidir. Baryonik maddelerin çoğunluğu hidrojen formunda olduğundan dolayı, reiyonizasyon genellikle “Hidrojen gazının reiyonizasyonu” olarak anılmaktadır. Evren tarihinde ilksel Helyum da aynı faz değişimine uğrasa da, farklı noktalarda gerçekleşen bu olaya Helyum reiyonizasyonu ismi verilir.

<span class="mw-page-title-main">Bruno Rossi</span> İtalyan fizikçi (1905 – 1993)

Bruno Benedetto Rossi, İtalyan deney fizikçisi. Kozmik ışın ve parçacık fiziğine önemli katkıları vardır. 1927'de Bologna Üniversitesi'nden mezun oldu. Kozmik ışınlarla ilgilendi ve elektronik tesadüf devresini icat etti. Kozmik ışın ile ilgili bir çalışmayı yönetmek için Eritre'ye gitti ve çalışmayı batıdan gelen ışınların doğudan gelenlere göre daha geniş olduğunu gösterdi.

Fiber lazer, içerisinde doğada nadir bulunan iterbiyum, neodimyum, disprozyum, praseodim ve tulyum gibi elementler barındıran lazer türüdür. Bu elementler devamlı olmayarak ışık yükseltmeyi sağlayan katkılı fiber yükselticilerle alakalıdırlar. Raman saçması veya dört dalga karışımı da bu şekilde fiber lazere güç sağlamaktadırlar.

<span class="mw-page-title-main">Kütleçekimsel tekillik</span> koordinat sistemine bağlı olmayan gökcisminin yerçekimi alanının sonsuz olarak ölçüldüğü konum

Kütleçekimsel tekillik ya da uzay-zaman tekilliği koordinat sistemine bağlı olmayan gökcisminin yerçekimi alanının sonsuz olarak ölçüldüğü konum olarak tanımlanır. Bu nicelikler, maddenin yoğunluğunun da dahil olduğu uzay-zaman eğriliklerinin skaler değişmeyen nicelikleridir. Uzay zamanın normal kuralları tekillik içinde var olamaz.

Kütleçekimsel dalgaların ilk gözlemi 14 Eylül 2015 tarihinde meydana geldi. Bu gözlemin açıklanması ise LIGO ve Virgo iş birliği ile "kütleçekimsel dalgaların bulunuşu" şeklinde 11 Şubat 2016 tarihinde açıklandı. Bundan önce kütleçekimi dalgalarının varlığı, ikili yıldız sistemlerinde atarcaların zamanlamalarının üzerindeki etkileri yoluyla, sadece dolaylı olarak anlaşılmaktaydı. Her iki LIGO gözlemevi tarafından da tespit edilmiş olan yerçekimi dalgaları, yaklaşık 36 ila 29 güneş kütlesi arasında kütlesi bulunan iki kara deliğin ve sonraki "zil susturma" tek ortaya çıkan siyah bir çift içe spiral ve birleşme kaynaklanan bir yerçekimsel dalga için karadelik, genel görelilik öngörüleriyle eşleşti. Sinyalin adı GW150914 olarak seçildi. LIGO tarafından yapılan bu gözlem, iki çok büyük kütleye sahip karadelik sisteminin varlığını kanıtlayan ve bu tür birleşmelerin ise evrenin şimdiki yaşı içerisinde oluşabileceği gerçeğini gösteren nitelikte bir gözlem oldu. Aynı zamanda bu olay, ikili karadelik birleşmesinden oluşan bir sistemin tarihteki ilk gözlemi olarak da kabul edilmektedir.

<span class="mw-page-title-main">Uzay (geometri)</span> uygun zamanında fiziksel bir gözlemciye göre mesafeler ve yönlerin genel çerçevesi

Uzay, nesnelerin ve olayların göreceli konuma ve yöne sahip olduğu sınırsız üç boyutlu bir boyuttur. Modern fizikçiler genellikle zamanla, uzay-zaman olarak bilinen sınırsız dört boyutlu bir sürekliliğin parçası olduğunu düşünmesine rağmen, fiziksel alan genellikle üç doğrusal boyutta düşünülür. Mekan kavramının fiziksel evrenin anlaşılması için temel öneme sahip olduğu düşünülmektedir. Bununla birlikte, filozoflar arasında kendisinin bir varlık mı, varlıklar arasındaki ilişkinin mi yoksa kavramsal çerçevenin bir parçası mı olduğu konusunda anlaşmazlık devam eder.

<span class="mw-page-title-main">Büyük patlama teorisinin tarihi</span>

Büyük patlama teorisi'nin tarihi, büyük patlamanın gözlemlenmesi ve teorik değerlendirmesinin yapılmasıyla başladı. Kozmolojideki teorik çalışmaların çoğu artık temel Büyük Patlama modeline yapılan iyileştirmeleri içermektedir. Teorinin kendisi aslında Belçikalı Katolik rahip, matematikçi, astronom ve fizik profesörü Georges Lemaître tarafından resmîleştirilmiştir.

<span class="mw-page-title-main">Kozmolojik lityum sorunu</span>

Astronomide, lityum sorunu veya lityum tutarsızlığı, galaksimizdeki metal açısından fakir halo yıldızlarının gözlemlerinden anlaşılan lityumun ilkel bolluğu ile Big Bang nükleosentezi + WMAP, CMB'nın(Kozmik Mikrodalga Arkaalan Işınımı kozmik baryon yoğunluğu tahminleri nedeniyle teorik olarak var olması gereken miktar arasındaki tutarsızlığı ifade eder. Yani, Big Bang'in en yaygın kabul gören modelleri, ilkel lityumun, özellikle 7Li'nin üç katı kadar var olması gerektiğini öne sürüyor. Bu, tahminlerle tutarlı olan hidrojen ve helyum izotoplarının gözlenen bolluğuyla çelişir. Tutarsızlık, bu ilkel bollukları standart BBN tahminlerinden kozmik baryon içeriğinin bir fonksiyonu olarak tasvir eden, astrofizikçi David Schramm'ın onuruna adlandırılan sözde "Schramm planı" ile vurgulanmıştır.

Douglas Gough tarafından türetilen bir terim olan Helyosismoloji, Güneş'in yapısını ve dinamiklerini salınımları yoluyla inceleyen bilimdir. Bunlar esas olarak Güneş yüzeyine yakın konveksiyonla sürekli olarak yönlendirilen ve sönümlenen ses dalgalarından kaynaklanır. Sırasıyla Dünya'nın veya yıldızların salınımları yoluyla incelenmesi olan jeosismoloji veya asterosismolojiye benzer. Güneş'in salınımları ilk kez 1960'ların başında tespit edilmiş olsa da, salınımların Güneş boyunca yayıldığı ve bilim adamlarının Güneş'in derin iç kısımlarını incelemesine olanak sağlayabileceği ancak 1970'lerin ortalarında fark edildi. Modern alan, Güneş'in rezonans modlarını doğrudan inceleyen küresel helyosismoloji ve bileşen dalgalarının Güneş'in yüzeyine yakın yayılmasını inceleyen yerel helyosismoloji olarak ikiye ayrılmıştır.

<span class="mw-page-title-main">Kütleçekimsel dalga arka planı</span>

Kütleçekimsel dalga arkaplanı, pulsar timing arrays gibi kütleçekimsel dalga deneyleri ile tespit edilebilen ve evrene yayılan rastgele kütleçekimsel dalgaların arkaplanıdır. Sinyal, tıpkı erken dönem evrendeki stokastik süreç gibi doğası gere rastgele olabilir veya süperkütleli karadelik ikilileri gibi çok sayıda zayıf, bağımsız, çözümlenmemiş kütleçekimsel dalga kaynağının tutarsız bir üst üste binmesiyle üretilebilir.