İçeriğe atla

Üretken reaktör

Bir sıvı metal soğutmalı hızlı üretken reaktörün şeması

Üretken reaktör (İngilizcebreeder reactor), enerji üretirken harcadığı bölünebilen madde miktarından daha fazlasını üreten nükleer reaktördür.[1] Üretken reaktörler başlangıçta ekonomik olarak hafif su reaktörlerinden daha iyi olduğundan cazip bulunmuş olup cazibesi daha fazla uranyum rezervlerinin bulunması ve yeni uranyum zenginleştirme yöntemlerinin yakıt maliyetlerini azaltmasıyla 1960'lardan sonra düşmüştür.[2]

Kaynakça

  1. ^ Waltar, A.E.; Reynolds, A.B (1981). Fast breeder reactors. New York: Pergamon Press. s. 853. ISBN 978-0-08-025983-3. 5 Ocak 2014 tarihinde kaynağından arşivlendi. Erişim tarihi: 2 Eylül 2016. 
  2. ^ Helmreich, J.E. Gathering Rare Ores: The Diplomacy of Uranium Acquisition, 1943–1954, Princeton UP, 1986: ch. 10 ISBN 0-7837-9349-9

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Nükleer enerji</span> atomun çekirdeğinden elde edilen enerji türü

Nükleer enerji, atomun çekirdeğinden elde edilen bir enerji türüdür. Kütlenin enerjiye dönüşümünü ifade eden, Albert Einstein'a ait olan E=mc² formülü ile ilişkilidir.

<span class="mw-page-title-main">Nükleer enerji santrali</span> Nükleer reaktör yardımıyla elde edilen enerjiyi dağıtan merkez

Nükleer santral (NPP) veya atom santrali (APS), ısı kaynağının nükleer reaktör olduğu termik santraldir. Termik santrallerde tipik olduğu gibi, ısı, elektrik üreten jeneratöre bağlı buhar türbinini çalıştıran buhar üretmek için kullanılır. Eylül 2023 itibarıyla Uluslararası Atom Enerjisi Kurumu, dünya çapında 32 ülkede faaliyette olan 410 nükleer santral ve inşa halinde olan 57 nükleer santral olduğunu bildirdi.

<span class="mw-page-title-main">Plütonyum</span> atom numarası 94 olan, neptünyumdan elde edilen radyoaktif bir element (simgesi Pu)

Plütonyum, 1940 yılında Glenn T. Seaborg, Edwin M. McMillan, J. W. Kennedy ve A. C. Wahlby tarafından 152 cm'lik siklotron içerisindeki uranyumun döteryum ile bombardımanı sonucunda elde edilmiştir.

Neptünyum (Np), uranyumun nötronlarla bombardımanından yapay olarak elde edilen, atom numarası 93, atom ağırlığı 239 olan, radyoaktif bir element.

<span class="mw-page-title-main">Nükleer reaktör</span> Uranyum, plütonyum vb. atom çekirdeklerinin parçalanmasından yararlanılarak enerji elde edilen kaynak

Nükleer reaktör, zincirleme çekirdek tepkimesinin başlatılıp sürekli ve denetimli bir biçimde sürdürüldüğü aygıtlardır. Nükleer reaktörler bazen nükleer enerjiyi başka bir tür enerjiye çevrilen santraller olarak kullanılırlar.

Zenginleştirilmiş uranyum, içeriğindeki Uranyum-235 (kim. sembol 235U) oranı belirli yöntemlerle doğal seviyelerin üzerine çıkartılmış uranyum karışımıdır. Doğada bulunan toplam uranyum elementinin %99.284'ü Uranyum-238 (kim. sembol 238U) izotopundan oluşur. Zincirleme fisyon gerçekleştirme kabiliyeti bulunan tek uranyum izotopu olan Uranyum-235'in tüm uranyum rezervleri içerisindeki payı yalnızca %0.72'dir. Bu yüzden nükleer yakıt amaçlı olarak kullanılabilmesi için 235U izotopunun uranyum karışımı içerisindeki oranı arttırılmalıdır.

Bu listede dünya çapında, ticari elektrik üretme maksatlı bütün nükleer santraller vardır. Askeri, deney, araştırma, gemi vb. özel santraller kapsam dışıdır. Listeye, hâlen hizmette bulunanların yanı sıra hizmetten çıkan ve inşaatı sürenler de dahildir.

Oklo bir Orta Afrika devleti olan Gabon'un Haut-Ogooué bölgesindeki Franceville şehri yakınlarındaki bir yerdir. 1972 Eylül'ünde uranyum madenlerinde çeşitli doğal nükleer yarılım (ing:fission) reaktörlerinin keşfedilmesi bilimadamlarının hayallerini ve merakını ateşledi.

<span class="mw-page-title-main">Kazatomprom</span>

Kazatomprom (Tr: Kazakistan Ulusal Atom Kuruluşu Kz: Қазақстанның ұлттық атом компаниясы), Kazakistan Cumhuriyeti devletine ait nükleer yakıt ve enerji şirketidir. Enerji ve yakıt elde etmek amacıyla Uranyum, Berilyum,Tantal ve Niobyum gibi elementlerin ve ender bulunan metallerin arama ve üretimi gibi etkinliklerde bulunur. Nükleer enerji üretimi için yakıt hammaddesi ihraç eder. Kazatomprom, 1997 yılında kurulmuş olup, merkezi Kazakistan Cumhurbaşkanı Kararnamesi ile Kazakistan Astana'da yer almaktadır ve Ulusal Refah Fonu "Samruk-Kazına"'nın bir girişimidir. 2010'dan beri Kazatomprom, doğal uranyum üretiminde dünya lideridir.

IV. Nesil III. Nesil reaktörlerin halefi olarak tasarlanan nükleer reaktör tasarımlarıdır. Birinci nesil sistemlerin çoğu kullanımdan kaldırıldığı için dünya çapında faaliyette olan reaktörlerin çoğu ikinci ve 3 nesil sistemlerdir. Generation IV International Forum, IV. nesil reaktörlerin gelişimini koordine eden uluslararası bir organizasyondur. V. Nesil reaktörler tamamen teoriktir ve henüz uygulanabilir olarak görülmemektedir.

<span class="mw-page-title-main">Sıvı florür toryum reaktörü</span>

Sıvı florür toryum reaktörü, bir tür erimiş tuz reaktörüdür. LFTR, yakıt için florür esaslı, erimiş, sıvı tuzlu toryum yakıt çevrimini kullanır.

<span class="mw-page-title-main">Olkiluoto Nükleer Enerji Santrali</span>

Olkiluoto Nükleer Enerji Santrali, Finlandiya'nın Eurajoki belediyesinde bulunan bir nükleer enerji santralidir. Santral, 1979 yılında hizmete girmiş olup Teollisuuden Voima tarafından işletilmektedir.

<span class="mw-page-title-main">Kimyasal reaksiyon mühendisliği</span>

Kimyasal reaksiyon mühendisliği, kimya mühendisliği ve endüstriyel kimya alanında kullanılan kimyasal reaktörler ve tepkime kinetiği ile ilgilenen bir uzmanlık alanıdır. Tepkime kinetiği ve reaktör tasarımını birleştiren kimyasal reaksiyon mühendisliği, birçok endüstriyel kimyasalın üretimi için gerekli temel bir unsurdur. Kimyasal reaksiyon mühendisliği disiplininin günlük hayatta pek çok uygulama alanı bulunur. Kimyasal üretimi, ilaç üretimi ve atık arıtımı faaliyetlerinde reaksiyon mühendisliği kullanılır. Enzim kinetiği, farmakokinetik, ısı etkileri, ani reaksiyonlar ve tesis güvenliği gibi konularda da kimyasal reaksiyon mühendisliği disiplininden faydalanılır. Kimyasal reaksiyon mühendisliği ilk kez 1940'lar ve 1950'lerde hızla büyüyen kimya ve petrokimya sanayisinin ihtiyaçlarını karşılamak için ortaya çıkmış ve günümüze kadar plastiklerin, kimyasalların, ilaçların ve diğer pek çok maddenin üretim süreçlerinde kullanılan bir yöntem olmuştur.

<span class="mw-page-title-main">Kimyasal reaktör</span> içerisinde kimyasal reaksiyon gerçekleştirmek için tasarlanmış tanklar

Kimyasal reaktörler bir kimyasal reaksiyonun gerçekleştirildiği proses ekipmanlarıdır. Kimya mühendisliğinde proses tasarımı ve analizinde sık kullanılan klasik bir ünite prosesidir. Bir kimyasal reaktörün tasarımı, kimya mühendisliğinin birden fazla unsurunun kullanılmasını gerektirir. Reaktörler proseste ham maddelerin ürünlere dönüştüğü oldukça temel bir ekipman olduğundan proses tasarımı açısından büyük önem arz eder. Kimya mühendisleri bir reaksiyonun net bugünkü değerini en üst düzeye çıkarmak için reaktörler tasarlar. Tasarımcılar satın alma ve işletme maliyetini en düşük seviyelerde tutarken bir yandan da üretilen ürün miktarını en yüksek seviyede tutmak için reaksiyonun ürünler yönünde mümkün olan en yüksek verimle devamlılığını sağlarlar. Enerji girişi, enerji çıkışı, ham madde maliyetleri, işçilik vb. işletme giderlerine örnek olarak verilebilir. Isıtma, soğutma, basıncı artırmak için pompalama, sürtünmeden kaynaklı basınç düşüşü ve çöktürme gibi durumlar da enerji değişimlerine birer örnektir.

Uranyum (92U), kararlı izotopu olmayan, doğal olarak oluşan radyoaktif bir elementtir. Uzun yarı ömürleri olan ve Dünya'nın kabuğunda kayda değer miktarda bulunan iki ilkel izotopu vardır: uranyum-238 ve uranyum-235. Uranyum-233 gibi diğer izotoplar üretken reaktörlerinde üretilmiştir. Doğada veya nükleer reaktörlerde bulunan izotoplara ek olarak, 214U ile 242U arasında çok daha kısa yarı ömre sahip birçok izotop üretilmiştir. Doğal uranyumun standart atom ağırlığı 238,02891(3)' tür.

<span class="mw-page-title-main">Kalininskaya Nükleer Enerji Santrali</span>

Kalininskaya Nükleer Enerji Santrali, Moskova'nın 350 kilometre uzağında Tver bölgesine bağlı Udomlya kasabasında, aynı adı taşıyan gölün yanına kurulmuş bir nükleer enerji santralidir.

<span class="mw-page-title-main">Shippingport Atom Enerjisi Santrali</span>

Shippingport Atom Enerjisi Santrali dünyanın yalnızca barış zamanı kullanımlarına ayrılmış ilk tam ölçekli atom elektrik santraliydi. Amerika Birleşik Devletleri, Pensilvanya, Beaver County'deki Ohio Nehri üzerindeki günümüz Beaver Valley Nükleer Üretim İstasyonunun yakınında, yaklaşık 40 km (40 km) uzaklıkta bulunmaktaydı.

Bir nükleer yakıt bankası, nükleer reaktörlerini beslemek için yedek bir LEU kaynağına ihtiyaç duyan ülkeler için düşük zenginleştirilmiş uranyum (LEU) rezervidir. Zenginleştirme teknolojisine sahip olan ülkeler, zenginleştirilmiş yakıtı, zenginleştirme teknolojisine sahip olmayan ülkelerin güç reaktörleri için yakıt elde edeceği bir "bankaya" bağışlayacaklardır.

<span class="mw-page-title-main">Daya Bay Nükleer Santrali</span>

Daya Bay Nükleer Santrali, Shenzhen, Guangdong, Çin'in doğu ucunda, Longgang Bölgesi'ndeki Daya Körfezi'nde bulunan bir Nükleer enerji santralidir ve Hong Kong'un kuzey doğusundadır. Daya Bay, sırasıyla 1993 ve 1994'te ticari işletmeye başlayan Framatome ANP French 900 MWe üç soğutma döngüsü tasarımına (M310) dayanan iki 944 MWe PWR nükleer reaktörüne sahiptir.

<span class="mw-page-title-main">Toryum bazlı nükleer enerji</span>

Toryum bazlı nükleer enerji üretimi, verimli öncül element toryumdan üretilen izotop uranyum-233'ün nükleer bölünmesiyle beslenir. Bir toryum yakıt çevrimi, toryum bolluğu, üstün fiziksel ve nükleer yakıt özellikleri ve azaltılmış nükleer atık üretimi dahiluranyum yakıt çevrimine göre çeşitli potansiyel avantajlar sunabilir. Toryum yakıtının bir avantajı, düşük silahlanma potansiyelidir; büyük ölçüde toryum reaktörlerinde tüketilen uranyum-233/ 232 ve plütonyum-238 izotoplarını silah haline getirmek zordur.