İçeriğe atla

Öklid uzaklığı

Öklid uzaklığı iki nokta arasındaki doğrusal uzaklıktır.

n boyutlu Öklid uzayında ve noktaları arasındaki Öklid uzaklığı şu şekilde tanımlanır:

Örnekler

Tek boyutta uzaklık

Tek boyutta yer alan, ve , noktaları için Öklid uzaklığı şu şekilde hesaplanır:

Bu aynı zamanda gündelik hayatta kullandığımız uzunluk kavramının karşılığıdır.

İki boyutta uzaklık

İki boyutlu bir düzlemde yer alan, ve , noktaları için Öklid uzaklığı şu şekilde hesaplanır:

Üç boyutta uzaklık

Üç boyutlu uzayda yer alan, ve , noktaları için Öklid uzaklığı şu şekilde hesaplanır:

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Elips</span>

Geometride, elips bir koninin bir düzlem tarafından kesilmesi ile elde edilen düzlemsel, ikinci dereceden, kapalı eğridir.

<span class="mw-page-title-main">Küre</span> geometrik şekil

Günlük kullanımıyla küre kusursuz simetriye sahip geometrik bir nesnedir, bir yüzeydir; üç boyutlu Öklit uzayında (R3) yatar.

<span class="mw-page-title-main">Mutlak değer</span> matematikte bir gerçel sayının işaretsiz/pozitif işaretli karşılığı

Matematikte, mutlak değer bir gerçek sayının işaretsiz değerini verir. Örneğin, 3; hem 3'ün hem de -3'ün mutlak değeridir. Bilgisayarlarda ise, bu ifade etmek için kullanılan matematiksel fonksiyon genelde abs(...)'dir

Korelasyon, olasılık kuramı ve istatistikte iki rassal değişken arasındaki doğrusal ilişkinin yönünü ve gücünü belirtir. Genel istatistiksel kullanımda korelasyon, bağımsızlık durumundan ne kadar uzaklaşıldığını gösterir.

Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. a ve b sayıları gerçek olursa karmaşık sayılar şu biçimde gösterilirler:

<span class="mw-page-title-main">Yarıçap</span> merkezinden çevresine bir daire veya küre içinde bölüm veya yüzeyi ile uzunluğu

Yarıçap, bir daire veya kürenin özeğinin (merkezinin) çemberine olan mesafesidir. Çapın yarısına eşittir.

<span class="mw-page-title-main">Doğrusal denklem</span>

Doğrusal ya da lineer denklem terimlerinin her biri ya birinci dereceden değişken ya da bir sabit olan denklemlerdir. Böyle denklemlere "doğrusal" denmesinin nedeni içerdikleri terim ve değişkenlerin sayısına bağlı olarak (n) düzlemde ya da uzayda bir doğru belirtmesindendir. Doğrusal denklemlerin en yaygını bir ve değişkeni içeren aşağıdaki formdur:

Geometride, izdüşüm modeli olarak da adlandırılan Klein Modeli, geometrisindeki noktalar n-boyutlu bir küreye -ya da daireye- hapsolmuş ve geometrisindeki doğrular bu kürenin -ya da dairenin - içinde doğru parçaları olan n-boyutlu hiperbolik geometrinin bir modelidir. Poincaré yarı-düzlem modeli ve Poincaré daire modeli'nde olduğu gibi, Klein-Beltrami modeli de ilk kez, bu modelleri hiperbolik geometrinin Öklid Geometrisi ile eşit derecede tutarlı olduğunu ispatlamak için kullanan Eugenio Beltrami tarafından ortaya atılmıştır. Uzaklık fonksiyonu ilk kez Arthur Cayley tarafından ortaya atılmış ve Felix Klein tarafından hiperbolik geometride geometrik açıdan kaleme alınmıştır.

Bir genelleştirilmiş ortalama; Pisagorik ortalamalarını, yani aritmetik ortalama, geometrik ortalama ve harmonik ortalamayı, aynı tanım formülünde birleştirip kapsayan bir soyut genelleştirmedir. Güç ortalaması veya Holder ortalaması adları da verilmektedir.

<span class="mw-page-title-main">Mesafe</span> ölçülebilir bir uzayda veya gözlemlenebilir bir fiziksel uzayda iki noktayı birleştiren düz çizginin uzunluğu

Mesafe (uzaklık), iki noktanın birbirlerinden ne kadar ayrı olduklarının sayısal ifadesidir. Metrik ölçüm sisteminde uzaklık birimi metredir ve m sembolü ile gösterilir.

Hiperbolik düzlemin dönüşüm grubu, genel Möbius grubunun alt grubu olup ile gösterilir. Üst yarı düzlemi koruyan bu grup Riemann küresi üzerinde tanımlıdır. nin etkisi altında hiperbolik doğrular yine hiperbolik doğrulara giderken, herhangi iki eğri arasındaki açının mutlak değerinin, hiperbolik uzunluk ve uzaklığın korunması grubun karakteristik özelliklerinden bazılarıdır. Bu özelliklerden önemli bir sonuca, hiperbolik düzlemin dönüşüm grubuyla hiperbolik yarı düzlemin izometri grubunun eşyapılı olduğuna, varmak mümkündür.

<span class="mw-page-title-main">Çevrel çember</span>

Çevrel çember, geometride, bir çokgenin tüm köşelerinden geçen çember. Bu çemberin merkezi çevrel özek olarak isimlendirilir.

<span class="mw-page-title-main">Hilbert uzayı</span>

Matematikte Hilbert uzayı, sonlu boyutlu Öklit uzayında uygulanabilen lineer cebir yöntemlerinin genelleştirilebildiği ve sonsuz boyutlu da olabilen bir vektör uzayıdır. Daha kesin olarak, bir Hilbert uzayı, uzayın tam metrik uzay olmasını sağlayan bir uzaklık fonksiyonu üreten bir iç çarpımla donatılmış bir vektör uzayıdır. Bir Hilbert uzayı, bir Banach uzayının özel bir durumudur. Matematik, fizik ve mühendislikte sıkça kullanılmaktadır. Kuantum mekaniğiyle uyumludur. Adını David Hilbert'ten almaktadır.

<span class="mw-page-title-main">Hız</span> vektörel bir fiziksel nicelik

Hız, bir nesnenin hareket yönü ile birlikte olan süratini ifade eder. Hız, cisimlerin hareketini tanımlayan bir klasik mekanik dalı olan kinematikte temel bir kavramdır.

<span class="mw-page-title-main">Öklid uzayı</span> Öklid geometrisinin yüksek boyutlu vektör uzaylarına genelleştirilmesi

Matematikte Öklid uzayı, Öklid geometrisinin üç boyutlu uzayıdır ve bu kavramlar, çok boyutlu olarak genelleştirilir. “Öklid” terimi bu uzayları, Öklid geometrisi olmayan eğimli uzaydan ve Einstein'nın genel görelilik kuramından ayırt eder. Bu adı Yunan matematikçi Öklid'den dolayı almıştır.

<span class="mw-page-title-main">Vektör alanı</span> oklid uzayının seçilen bir alt kümesinin her bir noktasında yöneyin belirlenmesidir.

Yöney alan, Öklid uzayının seçilen bir alt kümesinin her bir noktasında yöneyin belirlenmesidir. Düzlemdeki bir yöney alanı, her biri düzlemdeki bir noktaya ilişik, yönü ve büyüklüğü olan oklar topluluğu olarak düşünülebilir.

Fizikte konuşlanma sistemi farklı zaman dilimlerinde nesnelerin konum ve yönelim gibi özelliklerini belirlemek ve ölçmek için kullanılan bir koordinat sistemini ifade etmektedir. Ayrıca bu özelliklerin temsilinde kullanılan kümelerini de içerebilmektedir. Daha zayıf bir anlamda, bir konuşlanma sistemi yalnızca koordinatları betimlememektedir, aynı zamanda bu sistemde hareket eden nesnelerin ayırt edilmesinde her zaman dilimi için aynı üç boyutlu alanları da tanımlamaktadır.

Birim küre, belirli merkez noktasından 1 birim uzaklıkta olan noktalar kümesidir.Mesafelerin genellenmiş kavramları olarak da kullanılabilir.Kapalı bir birim küre, merkezden 1 birim az veya 1 birime eşit uzaklıktaki noktalar kümesidir.Genellikle, boşluktaki orijinden bir nokta ayırt edilmişitir ve bu noktanın birim kürenin veya birim topun merkezi olduğu anlaşılır.Bu yüzden birim küre ya da birim topun aynı olduğu söylenir. Örneğin;bir boyutlu küre, genellikle bir halka olarak adlandırılan bir yüzeydir ve çember bir içi yüzeye ve dış yüzeye sahipse iki boyutlu bir küredir.Benzer bir şekilde, halk dilinde küre olarak bilinen Öklid katısının yüzeyi iki boyutlu küredir ve ayrıca içi ve dış yüzeye sahip olduğunda üç boyutlu küre olur. Bir birim küre basitçe bir küre yarıçapına sahiptir.Birim kürenin önemi, herhangi bir kürenin ölçeklendirme ve çevirme kombinasyonlarına dönüşebilmesinden anlayabiliriz.Bu yolla, çalışırken kürenin temel özelliklerini daha aza indirgeyebiliriz.

<span class="mw-page-title-main">Rastgele yürüyüş</span>

Rastgele yürüyüş (ya da rassal yürüyüş) matematiksel bir nesne olup, bir stokastik veya rastgele süreç olarak bilinir. Bu süreç, herhangi bir matematiksel uzayda –örneğin tamsayılar uzayı–atılan rastgele adımların toplamından oluşan patikayı tanımlamaya yöneliktir. Örneğin, bir molekülün sıvı veya gaz içerisinde izlediği yol, hayvanların yem arayışında takip ettiği patika, değişkenlik gösteren hisse fiyatları ve de bir borsa oyuncusunun finansal durumu rastgele yürüyüş modelleri ile tahmin edilebilir; ancak gerçekte tamamen rastlantısal olmama ihtimalleri de vardır. Bu örneklerin de gösterdiği gibi, rastgele yürüyüş modelinin birçok bilim dalında uygulama alanı mevcuttur; ekoloji, psikoloji, bilgisayar bilimleri, fizik, kimya, biyoloji ve ekonomi bunlara örnektir.

Benaloh kriptosistemi 1994 yılında Josh (Cohen) Benaloh tarafından oluşturulan Goldwasser-Micali şifreleme sisteminin bir genişletilmesidir. Goldwasser-Micali'de bitler tek tek şifrelenirken, Benaloh Kriptosisteminde veri blokları grup olarak şifrelenmektedir. Orijinal makaledeki küçük bir hata Laurent Fousse et al. 'da düzeltilmiştir.