İçeriğe atla

Zinodoros (matematikçi)

Zenodorus (GrekçeΖηνόδωρος; yaklaşık MÖ 200, Atina - 140) çevresi sabit olan bir şeklin alanını ve sabit yüzeyli katı bir cismin hacmini inceleyen eski bir Yunan matematikçi.

Hayatı ve Çalışmaları

Philonides ile arkadaş olmuş ve Philonides'in biyografisinde anlatıldığı gibi Atina'ya iki gezi yapmış olsa da Zenodorus'un hayatı hakkında çok az şey biliniyor. Yazı tarzından Arşimet'ten çok daha geç bir dönemde yaşadığı biliniyor.

Kendisinden Diocles'in Yanan Aynalar Üzerine (İngilizceOn Burning Mirrors) adlı kitabında bahsedilmiştir:

Ve astronom Zenodorus, Arcadia'ya gelip bizimle tanıştırıldığında, bize güneşe bakacak şekilde yerleştirildiğinde yansıyan ışınların bir noktada buluşarak yanmaya neden olacak bir ayna yüzeyini nasıl bulacağımızı sordu.[1]

Zenodorus, günümüzde kayıp olan İzoperimetrik rakamlar üzerine (İngilizceOn isoperimetric figures) incelemesini yazmasıyla tanınır. Önermelerinin çoğu, İskenderiyeli Theon'un Batlamyus'un Sözdizimi (İngilizceSyntaxis) hakkındaki yorumundan bilinmektedir. Zenodorus, İzoperimetrik rakamlar üzerine (İngilizceOn isoperimetric figures) adlı eserinde farklı geometrik şekillerin alanlarını ve çevrelerini inceler. Kendisinin ispatladığı en önemli önermeler şunlardır:

  1. Eşit çevreye sahip tüm düzgün çokgenler arasında, en fazla açıya sahip olan alanı en büyük olandır.
  2. Bir daire, eşit çevreye sahip herhangi bir düzgün çokgenden daha büyüktür.
  3. Aynı sayıda kenara ve eşit çevreye sahip tüm çokgenler arasında, eşkenar ve eş açılı çokgen, alanı en büyük olandır.
  4. Yüzeyleri eşit olan tüm katı cisimler arasında küre, katı içerik (hacim) bakımından en büyüğüdür.[2][3]

Bilimsel incelemeleri, iki boyutluların yanı sıra üç boyutlu geometri sonuçlarını da içerir. Özellikle kürenin, belirli bir hacim için en az yüzey alanına sahip katı cisim olduğunu kanıtladı.

Notlar

  1. ^ Toomer (1976)
  2. ^ Heath (1981) ss. 207–213
  3. ^ Kline (1972), s. 126

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Öklid geometrisi</span> Öklide atfedilen matematiksel-geometrik sistem

Öklid geometrisi, İskenderiyeli Yunan matematikçi Öklid’e atfedilen matematiksel bir sistemdir ve onun Elemanlar adlı geometri üzerine ders kitabında tarif edilmektedir. Öklid'in yöntemi, sezgisel olarak çekici küçük bir aksiyom seti varsaymaktan ve bu aksiyomlara dayanarak birçok başka önermeyi (teoremleri) çıkarmaktan ibarettir. Öklid'in sonuçlarının çoğu daha önceki matematikçiler tarafından ifade edilmiş olsa da, Öklid, bu önermelerin kapsamlı bir tümdengelimli ve mantıksal sisteme nasıl uyabileceğini gösteren ilk kişi oldu. Elemanlar, ilk aksiyomatik sistem ve resmi ispatın ilk örnekleri olarak ortaokulda (lise) hala öğretilen düzlem geometrisi ile başlar. Üç boyutlu katı geometrisi ile devam ediyor. Elemanlar’ın çoğu, geometrik dilde açıklanan, şimdi cebir ve sayı teorisi olarak adlandırılan şeyin sonuçlarını belirtir.

<span class="mw-page-title-main">Öklid</span> Yunan matematikçi, aksiyomatik geometrinin mucidi

Öklid (Grekçe: Εὐκλείδης Eukleídēs; MÖ 330 - 275 yılları arasında yaşamış, İskenderiyeli bir matematikçidir. Megaralı Öklid'den ayırmak için bazen İskenderiyeli Öklid olarak anılır, genellikle "geometrinin kurucusu" veya "geometrinin babası" olarak anılan bir Yunan matematikçiydi. Ptolemy I döneminde İskenderiye'de aktifti. Elemanlar, yayınlandığı zamandan 19. yüzyılın sonlarına veya 20. yüzyılın başlarına kadar matematik öğretimi için ana ders kitabı olarak hizmet veren, matematik tarihindeki en etkili çalışmalardan biridir. Elemanlar’da, Öklid, küçük bir aksiyom setinden, şimdi Öklid geometrisi olarak adlandırılan şeyin teoremlerini çıkardı. Öklid ayrıca perspektif, konik kesitler, küresel geometri, sayı teorisi ve matematiksel kesinlik üzerine eserler yazdı.

<span class="mw-page-title-main">Apollonios (Pergeli matematikçi)</span> Konik kesitler üzerine yazılarıyla tanınan antik Yunan coğrafyacı ve astronom

Pergeli Apollonius, konik kesitler üzerindeki çalışmaları ile tanınan Antik Yunan geometri uzmanı ve astronom. Öklid ve Arşimet'in konuya katkılarından başlayarak, onları analitik geometrinin icadından önceki duruma getirdi. Elips, parabol ve hiperbol terimlerinin tanımları bugün kullanımda olanlardır.

<span class="mw-page-title-main">Yarıçap</span> merkezinden çevresine bir daire veya küre içinde bölüm veya yüzeyi ile uzunluğu

Yarıçap, bir daire veya kürenin özeğinin (merkezinin) çemberine olan mesafesidir. Çapın yarısına eşittir.

<span class="mw-page-title-main">Tesselasyon</span>

Matematikte bir döşeme, aralarında boşluk bırakmadan veya örtüşmeden bir düzlemi kaplayan düzlemsel şekiller kümesidir. Bu kavram daha yüksek boyutlar için de genellenebilir, bu genişletilmiş anlamı için döşeme yerine tesselasyon terimi kullanılır. Tesselasyon M. C. Escher'in eserlerinde sıkça görülebilir. Tesselasyona sanat tarihi boyunca, antik mimariden modern sanata kadar rastlanabilir.

<span class="mw-page-title-main">Anthemios (matematikçi)</span> Bizanslı Rum bilim insanı ve mimar

Trallesli Anthemius, Konstantinopolis şehrinde bulunan Ayasofya Katedrali'ni, İsidoros ile birlikte tasarlayan Doğu Romalı mimar. Katedralin tasarımında, tamamen yeni bir mimari türü kullandı, bu da kiliseyi son derece istikrarsız hale getirmeye katkıda bulundu, bu yüzden yapının birkaç kez onarılması gerekti. İki odakta sabitlenmiş bir ip ile bir elipsin yapımını ve parabolün odak özelliklerini anlattı. Fizikte ışığın aynalardan yansımasını inceledi.

<span class="mw-page-title-main">Delos problemi</span> Eski Mısırlı, Yunan ve Hint matematikçilerin üzerinde çalıştığı küpü iki katına çıkarma problemi (delos) pergel ve cetvel kullanarak çözülemeyen üç geometrik problemden biridir.

Küpü iki katına çıkarma ya da Delos problemi, pergel ve cetvel kullanarak çözülemeyen üç geometrik problemden biri. Eski Mısırlı, Yunan ve Hint matematikçiler bu problem üzerinde çalışmışlardır.

<span class="mw-page-title-main">Yunan matematiği</span> Eski Yunanların Matematiği

Yunan matematiği, Doğu Akdeniz kıyılarında MÖ 7. yüzyıldan MS 4. yüzyıla kadar uzanan Arkaik dönemden Helenistik ve Roma dönemlerine kadar yazılan matematik metinleri ile ortaya çıkan fikirleri ifade eder. Yunan matematikçiler, İtalya'dan Kuzey Afrika'ya tüm Doğu Akdeniz'e yayılmış şehirlerde yaşadılar, ancak kültür ve dil açısından birleştiler. "Matematik" kelimesinin kendisi Antik Yunancadan türemiştir: Grekçe: μάθημα: máthēma Yunanca telaffuz: [má.tʰɛː.ma] Yunanca telaffuz: [ˈma.θi.ma], "eğitim konusu" anlamına gelir. Kendi iyiliği için matematik çalışması ve genelleştirilmiş matematik teorilerinin ve kanıtlarının kullanılması, Yunan matematiği ile önceki uygarlıkların matematiği arasındaki önemli bir farktır.

<i>Öklidin Elementleri</i> Öklidin matematik hakkındaki bir incelemesi

Öklid'in Elementleri İskenderiye'li Antik Yunan Öklid'e atfedilmiş 13 geometri kitabı bütünüdür. Öklid'in Elementler'i, tanımlar, aksiyomlar, önermeler ve bu önermelerin ispatlarından oluşur. Konuları iki ve üç boyutlu şekillerde öklidyen geometri, sayı teorisini, perspektif, konik kesitler, küresel geometri ve kuadrik yüzeyleri içerir. En eski geniş çaplı matematiksel tez olan Elementler hala ders kitabı olarak kullanılmaktadır. Kitapta kullanılan aksiyomatik yöntem birçok filozof ve matematikçiyi etkilemiştir.

<span class="mw-page-title-main">Nikomedes (matematikçi)</span> Antik Yunan matematikçi

Nicomedes, açıyı üçe bölme de dahil olmak üzere çeşitli matematik problemlerini çözmek için kullandığı konkoid eğriyi keşfini içeren Konkoid Çizgiler Üzerine adlı bilimsel eseriyle ünlü bir Yunan matematikçi.

Heraclealı Bryson, muhtemelen Sokrates'in öğrencisi olan ve daireyi kareleştirme ve π'yi hesaplama problemini çözmeye katkıda bulunan eski bir Antik Yunan matematikçi ve sofist. Byrson, çemberin alanını hesaplama problemiyle ve Aristoteles'in kendisi hakkında yaptığı eleştirilerle tanınır.

Diocles Yunan matematikçi ve geometrici.

Ascalonlu Eutocius, çeşitli Arşimet incelemeleri ve Apollonius'un Konikleri üzerine yorumlar yazan bir Yunan matematikçi.

Hypsicles, Gökcisimlerinin yükselişi Üzerine ve bir kürenin içerisine düzgün katıların çizilmesiyle ilgilenen bir çalışma olan Öklid'in XIV. Elemanlar Kitabı kitaplarını yazmasıyla tanınan eski bir Yunan matematikçi ve astronom.

Antinouplisli Serenus, Roma Mısır'ındaki Geç Antik Thebaid'den bir Yunan matematikçi.

İznikli Sporus, muhtemelen günümüz Türkiye'sinde, Bursa ilinin antik Bithynia bölgesi Nicaea'dan gelen bir Yunan matematikçi ve astronom. Sporus, daireyi kareyle çevreleme ve küpü iki katına çıkarma gibi klasik problemler üzerinde çalışan bir Yunan matematikçiydi.

Cyreneli Theodorus, MÖ 5. yüzyılda yaşamış eski bir Libyalı Yunan matematikçi. Günümüze ulaşan ve ilk elden anlatılanlar, Platon'un diyaloglarından üçünde; Theaetetus, Sofist ve Devlet Adamı (Statesman) yer alır. Önceki diyalogda, şimdi Theodorus Sarmalı olarak bilinen matematiksel bir teoremi öne sürmektedir.

<span class="mw-page-title-main">Hipokrat ayı</span>

Geometride adını Sakız Adalı Hipokrat'tan sonra alan Hipokrat ayı, iki çemberden oluşan yaylarla sınırlanmış bir aydır, daha küçük olanın çapı, daha büyük çember üzerinde dik bir açıyı kapsayan bir kirişe sahiptir.

<span class="mw-page-title-main">Çift merkezli çokgen</span>

Geometride, çift merkezli (bicentric) çokgen, teğet bir çokgendir ve aynı zamanda döngüsel yani kirişler dörtgenidir - yani, çokgenin her köşesinden geçen bir çevrel çember içine çizilmiştir. Tüm üçgenler ve tüm düzgün çokgenler çift merkezlidir. Öte yandan, kenarları eşit olmayan bir dikdörtgen çift merkezli değildir, çünkü hiçbir çember dört kenara da teğet olamaz.

Gerald James Toomer, antik Yunan ve Orta Çağ İslam astronomisi üzerine çok sayıda kitap ve makale yazmış bir astronomi ve matematik tarihçisidir.