
Nükleer enerji, atomun çekirdeğinden elde edilen bir enerji türüdür. Kütlenin enerjiye dönüşümünü ifade eden, Albert Einstein'a ait olan E=mc² formülü ile ilişkilidir.

Radyoaktivite, radyoaktiflik, ışınetkinlik veya nükleer bozunma; atom çekirdeğinin, daha küçük çekirdekler veya elektromanyetik ışımalar yayarak kendiliğinden parçalanmasıdır. Çekirdek tepkimesi sırasında veya çekirdeğin bozunması ile ortaya çıkar. En yaygın ışımalar alfa(α), beta(β) ve gamma(γ) ışımalarıdır. Bir maddenin radyoaktivitesi bekerel veya curie ile ölçülür.

Nükleer füzyon, nükleer kaynaşma ya da kısaca füzyon; iki hafif elementin nükleer reaksiyonlar sonucu birleşerek daha ağır bir element oluşturmasıdır. Çekirdek tepkimesi olarak da bilinen bu tepkimenin sonucunda çok büyük miktarda enerji açığa çıkar.

İzotoplar, periyodik tabloda aynı atom numarasına ve konuma sahip olan ve farklı nötron sayıları nedeniyle nükleon sayıları bakımından farklılık gösteren iki veya daha fazla atom türüdür. Belirli bir elementin tüm izotopları neredeyse aynı kimyasal özelliklere sahipken, farklı atomik kütlelere ve fiziksel özelliklere sahiptirler. İzotop terimi, "aynı yer" anlamına gelen Yunan kökenli isos ve topos 'den oluşur; isimin anlamı ise, tek bir elementin farklı izotoplarının periyodik tabloda aynı pozisyonda yer alması anlamına gelir. Margaret Todd tarafından 1913 yılında Frederick Soddy'ye öneri olarak sunulmuştur.

Nükleer silah, nükleer reaksiyon ve nükleer fisyon birlikte kullanılmasıyla ya da çok daha kuvvetli bir füzyonla elde edilen yüksek yok etme gücüne sahip silahtır. Genel patlayıcılardan farklı olarak çok daha fazla zarar vermek amaçlı kullanılır. Sadece kullanılan bir silah, tüm bir kenti ya da bir ülkeyi canlı, cansız ne varsa tamamen yok edecek güçtedir.

Nükleer santral (NPP) veya atom santrali (APS), ısı kaynağının nükleer reaktör olduğu termik santraldir. Termik santrallerde tipik olduğu gibi, ısı, elektrik üreten jeneratöre bağlı buhar türbinini çalıştıran buhar üretmek için kullanılır. Eylül 2023 itibarıyla Uluslararası Atom Enerjisi Kurumu, dünya çapında 32 ülkede faaliyette olan 410 nükleer santral ve inşa halinde olan 57 nükleer santral olduğunu bildirdi.

Plütonyum, 1940 yılında Glenn T. Seaborg, Edwin M. McMillan, J. W. Kennedy ve A. C. Wahlby tarafından 152 cm'lik siklotron içerisindeki uranyumun döteryum ile bombardımanı sonucunda elde edilmiştir.

Zayıflatılmış uranyum, yapısındaki radyoaktif Uranyum-235 izotoplarının büyük kısmını kaybetmiş uranyuma denir. Zayıflatılmış uranyum, atom silahı veya atom enerjisi santrali için yakıt üretmek amacıyla uranyum zenginleştirilmesi sırasında ortaya çıkan bir yan üründür. Özkütlesi ve dayanıklılığı çok yüksek olduğundan silah sanayiide, özellikle mermi ve zırh yapımında, kullanılmaktadır.
Plütonyum-239, plütonyumun bir izotopudur. Plütonyum-239, nükleer silah üretiminde kullanılan birincil fisil izotoptur ancak uranyum-235 de bu amaç için kullanılır. Plütonyum-239 aynı zamanda uranyum-235 ve uranyum-233 ile birlikte termal spektrumlu nükleer reaktörlerde yakıt olarak kullanılabilen üç ana izotoptan biridir. Plütonyum-239'un yarı ömrü 24.110 yıldır.

Nükleer reaktör, zincirleme çekirdek tepkimesinin başlatılıp sürekli ve denetimli bir biçimde sürdürüldüğü aygıtlardır. Nükleer reaktörler bazen nükleer enerjiyi başka bir tür enerjiye çevrilen santraller olarak kullanılırlar.

Uranyum-235 (kim. simge 235U), 1935 yılında Amerikalı nükleer fizikçi Arthur Jeffrey Dempster tarafından keşfedilen, 92 proton ve 143 nötronlu bir Uranyum izotopudur. Bu izotopu bir başka radyoaktif Uranyum izotopu olan 238U'den ayıran en önemli özelliği doğada ekonomik miktarlarda bulunması ve zincirleme fisyon reaksiyonu yaratabilmesidir. 235U'in yarılanma zamanı (yarı ömrü) 7.038·108 yıldır ve radyoaktif bozunma sonucu Toryum-231 izotopunu oluşturur. Bir mol 235U atomunun fisyonundan 200 MeV = 3.2 × 10−11 J, yani 18 TJ/mol = 77 TJ/kg'lik enerji açığa çıkar. Doğadaki toplam doğal uranyumun kütle olarak yalnızca %0.72'si U-235'dir, geri kalanın çoğu U-238'dir. En önemli kullanım alanları nükleer silahlar ve elektrik santralleridir.

Uranyum-238, (kim. simge 238U veya U-238), 92 proton ve 146 nötronu ile doğada en sık rastlanan (tümü içindeki oranı %99,284) Uranyum izotopudur. 238U'in yarılanma zamanı (yarı ömrü) 4.46 × 109 (4,46 milyar) yıldır ve radyoaktif ışıma yaparak (doğal ışıma enerjisi 4,267 MeV) sırasıyla bir başka uranyum izotopu olan 239U, Neptünyum 239Np ve Plütonyum 239Pu'a indirgenir. Silah sanayiinde zırh ve zırh delici mermilerde sıklıkla kullanılan Zayıflatılmış uranyum içerisinde bol miktarda 238U izotopu bulunurken, nükleer silah yapımında kullanılan Zenginleştirilmiş uranyum ise yüksek oranda 235U izotopundan oluşur. 238U direkt nükleer yakıt olarak kullanıma uygun değildir, ancak reaktör ortamında fisyon özelliği bulunan plütonyum elementinin üretiminde kullanılabilir.

Nükleer yakıt, nükleer enerji elde etmek için kontrollü nükleer füzyon ya da nükleer fisyon yapmak amacıyla kullanılan maddelerdir. Nükleer yakıtlar tüm yakıtlar içinde enerji yoğunluğu en yüksek olanlarıdır.

Nükleer silah yapımı, nükleer bir silahın fiziksel paketlerinin patlaması için yapılan fiziksel, kimyasal ve teknik düzenlemelerdir. Dört temel tasarım türü vardır. Sonuncusu hariç hepsinde, yerleştirilmiş cihazlardaki patlayıcı enerji füzyon ile değil, nükleer fisyon ile elde edilir.
- Saf fisyon silahlar, üretilen ilk nükleer silahlar oldukları gibi şu ana kadar yapılan savaşlarda kullanılmış tek nükleer silah türüdür. Silahın aktif maddesi olan fisil uranyum (U-235) veya plütonyum (Pu-239) patlatılarak zincirleme çekirdek tepkimesiyle kritik kütleye iki yöntemden biri kullanılarak erişir:
- Tabanca tipi fisyon silah: fisil uranyumun bir parçası normal tabanca kurşunu ateşler gibi, silahın sonundaki diğer fisil uranyum hedefine doğru ateş edilir ve bu parçalar birleşerek kritik kütleyi oluştururlar.
- İçe doğru patlama: Etrafı güçlü patlayıcılar ile çevrili U-235, Pu-239 veya her ikisinin birleşmesinden oluşan fisil bir kütle sıkıştırılarak kritik kütle elde edilir.
Nükleer dönüşüm, bir kimyasal element ya da bir izotopun birbirine dönüşmesidir. Her element atomlarındaki proton sayılarıyla tanımlanırlar. Başka bir deyişle, atom çekirdeği içindeki proton ya da nötron sayısında değişim gerçekleştiğinde nükleer dönüşüm meydana gelir.

Sıvı florür toryum reaktörü, bir tür erimiş tuz reaktörüdür. LFTR, yakıt için florür esaslı, erimiş, sıvı tuzlu toryum yakıt çevrimini kullanır.

Arthur Jeffrey Dempster en çok kütle spektrometrisi alanındaki çalışmaları ve 1935'te uranyum izotop 235 U keşfi ile tanınan Kanadalı-Amerikalı bir fizikçiydi.
Uranyum (92U), kararlı izotopu olmayan, doğal olarak oluşan radyoaktif bir elementtir. Uzun yarı ömürleri olan ve Dünya'nın kabuğunda kayda değer miktarda bulunan iki ilkel izotopu vardır: uranyum-238 ve uranyum-235. Uranyum-233 gibi diğer izotoplar üretken reaktörlerinde üretilmiştir. Doğada veya nükleer reaktörlerde bulunan izotoplara ek olarak, 214U ile 242U arasında çok daha kısa yarı ömre sahip birçok izotop üretilmiştir. Doğal uranyumun standart atom ağırlığı 238,02891(3)' tür.

Uranyum nitrür çeşitli kimyasalları ifade etmektedir: Uranyum mononitrür (UN), Uranyum seskuinitrür (U2N3) ve uranyum dinitrür (UN2). Burada nitrür kelimesi uranyuma bağlı azotun -3 oksidasyon seviyesini belirtmektedir.

Teknoloji, İkinci Dünya Savaşı'nda önemli bir rol oynadı. Savaş sırasında kullanılan teknolojilerin bazıları 1920'ler ve 1930'ların iki savaş arası yıllarında geliştirildi, çoğu savaş sırasında ihtiyaçlara ve öğrenilen derslere göre geliştirildi, diğerleri ise savaş sona erdiğinde geliştirilmeye başlandı. Pek çok savaşın günlük yaşamımızda kullandığımız teknolojiler üzerinde büyük etkileri oldu ancak İkinci Dünya Savaşı, günümüzde kullanılan teknoloji ve cihazlar üzerinde en büyük etkiyi yarattı. Teknoloji aynı zamanda II. Dünya Savaşı'nın yürütülmesinde tarihteki diğer savaşlardan daha büyük bir rol oynadı ve sonuçlarında kritik bir rol oynadı.