İçeriğe atla

Yük korunumu

Fizikte yük korunumu, izole bir sistemdeki toplam elektrik yükünün asla değişmemesi prensibi.[1] Net elektrik yükü miktarı, pozitif yükün miktarı eksi evrendeki negatif yükün miktarı her zaman korunur. Fiziksel koruma kanunu olarak kabul edilen yük korunumu, herhangi bir alan hacmindeki elektrik yükü miktarındaki değişimin, hacme akan yük miktarına eksi hacimden dışarı akan yük miktarına eşit olduğu anlamına gelir. Temel olarak, bir bölgedeki yük miktarı ile bu bölgeye giren ve çıkan yük akışı arasındaki yük yoğunluğu ve akım yoğunluğu arasındaki süreklilik denklemi ile verilen bir muhasebe ilişkisidir.

Bu, bireysel olarak pozitif ve negatif yüklerin yapılamayacağı veya yok edilemeyeceği anlamına gelmez. Elektrik yükü, elektronlar ve protonlar gibi atomaltı parçacıklar tarafından taşınır. Parçacık fiziğinde yükün korunumu, yüklü parçacıkları oluşturan reaksiyonlarda net yük miktarını değişmeden tutarak daima eşit sayıda pozitif ve negatif parçacık oluşması anlamına gelir. Benzer şekilde, parçacıklar yok edildiğinde, eşit sayıda pozitif ve negatif yük yok edilir. Bu özellik şu ana kadar tüm ampirik gözlemlerle istisnasız desteklenmektedir.[1]

Yükün korunması, evrendeki toplam yük miktarının sabit olmasını gerektirse de, bu miktarın ne olduğu sorusunu açığa çıkarır. Çoğu kanıt, evrendeki net yükün sıfır olduğunu;[2][3] yani, eşit miktarda pozitif ve negatif yük olduğunu göstermektedir.

Tarihi

Yük korunumu, ilk kez 1746 yılında Britanyalı bilim insanı William Watson ve 1747 yılında Amerikalı siyasetçi ve bilim insanı Benjamin Franklin tarafından önerilse de, ilk kez 1843 yılında Michael Faraday tarafından kanıtlandı.[4][5]

Yük korunumunun resmî ifadesi

Matematiksel olarak yük korunumu kanunu, süreklilik denklemi ile gösterilebilir:

Burada , t, zamanında belirli bir hacimdeki elektrik yükü birikimidir. Hacme akan yükün miktarı ve hacimden akan yükün miktarıdır; her iki miktar da zamanın genel işlevleri olarak kabul edilir.

İki zaman değeri arasındaki bütünleşik süreklilik denklemi şu şekildedir:

Genel çözüm, integral denklemine yol açan başlangıç koşulunun sabitlenmesiyle elde edilir:

koşulu, kontrol hacminde yük miktarı değişiminin olmamasına karşılık gelir: sistem sabit bir duruma ulaşır. Yukarıdaki koşuldan, aşağıdakilerin doğru olması gerekir:

Bu nedenle ve zaman içinde eşittir (sabit olmak zorunda değil), daha sonra kontrol hacmi içindeki toplam yük değişmez. Bu tümdengelim, sabit durumdayken ve ima ettiğinden, doğrudan devamlılık denkleminden elde edilebilir.

Elektromanyetik alan teorisinde vektör hesabı, yük yoğunluğu ρ(metreküp başına coulomb cinsinden) ve elektrik akım yoğunluğu J (metrekare başına amper) cinsinden kanunu ifade etmek için kullanılabilir. Buna yük yoğunluğu sürekliliği denklemi denir:

Soldaki terim, ρyük yoğunluğunun bir noktada değişim oranıdır. Sağdaki terim, J akım yoğunluğunun aynı noktadaki diverjansıdır. Denklem, bu iki faktörü eşitler. Yük yoğunluğunun bir noktada değişmesi için tek yolun, bir yük akımının noktadan içeri veya dışarı akması olduğunu söyler. Bu ifade, dört akımın korunmasına eşdeğerdir.

Matematiksel türetme

Birimdeki net akım,

S = ∂V, dışa dönük normallerin yönlendirdiği V'nin sınırıdır ve dS, NdS için sınırın V'nin normal dışa dönük işaretidir. Burada J, hacim yüzeyindeki akım yoğunluğudur (birim zaman başına birim alan yükü). Vektör, akım yönünü gösterir.

Diverjans teoreminden bu yazılabilir:

Yükün korunması, bir hacme yapılan net akımın birim içindeki sorumlu net değişime eşit olmasını gerektirir.

V hacmindeki toplam yük q, V cinsinden yük yoğunluğunun ayrılmaz toplamıdır.

Yani Leibniz integral kuralı

(1) ve (2) eşitlenir

Bu her hacim için geçerli olduğundan, genel olarak

Ayar değişmezliği bağlantısı

Yük korunumu, aynı zamanda her korunum kanununun temel fiziğin simetrisi ile ilişkili olduğunu iddia eden teorik fiziğin merkezî bir sonucu olan Noether teoremi aracılığıyla simetrinin bir sonucu olarak da anlaşılabilir. Yükün korunmasına ilişkin simetri, elektromanyetik alanın küresel çapta değişmezliğidir.[6] Bu, elektrik ve manyetik alanların elektrostatik potansiyel 'nin sıfır noktasını temsil eden değerin farklı seçenekleri ile değiştirilmemesiyle ilgilidir. Bununla birlikte, tam simetri daha karmaşıktır ve vektör potansiyel 'yı da içerir. Ayar değişmezliğinin tam açıklaması, skaler ve vektör potansiyeli, rastgele skaler alan gradyanı : tarafından değiştirildiğinde elektromanyetik alanın fiziği değişmez.

Kuantum mekaniğinde skaler alan, yüklü parçacığın dalga fonksiyonundaki faz kaymasına eşdeğerdir:

Bu nedenle, ölçerin değişmezliği, bir dalga fonksiyonu fazındaki değişikliklerin gözlemlenemez olduğu gerçeğine eşdeğerdir ve yalnızca dalga fonksiyonunun büyüklüğündeki değişiklikler, olasılık fonksiyonu 'de değişikliklere neden olur. Bu, yük korunumunun teorik kökenidir.

Ayar değişmezliği, elektromanyetik alanın çok önemli, iyi kurulmuş bir özelliğidir ve test edilebilir birçok sonucu vardır. Yük korumasının teorik gerekçesi, bu simetriye bağlanarak büyük ölçüde güçlendirilir. Örneğin ayar değişmezliği ayrıca fotonun kütlesiz olmasını gerektirir, bu nedenle fotonun sıfır kütleye sahip olduğuna dair iyi deneysel kanıt, aynı zamanda yükün korunduğuna dair güçlü kanıtlardır.[7]

Bununla birlikte, gösterge simetrisi kesin olsa bile, normal 3 boyutlu alandan gizli ekstra boyutlara yük sızıntısı olursa, korumaya uygun olmayan elektrik yükü olabilir.[8][9]

Deneysel kanıt

Basit argümanlar bazı yük korumasız türlerini dışlar. Örneğin, pozitif ve negatif parçacıkların üzerindeki temel yükün büyüklüğü, protonlar ve elektronlar için 10−21 faktöründen fazla olmayan bir farklılık göstermeyecek kadar eşit olmalıdır.[10] Sıradan madde, muazzam miktarlarda eşit sayıda pozitif ve negatif parçacık, proton ve elektron içerir. Elektron ve proton üzerindeki temel yük biraz daha farklı olsaydı, tüm maddelerin büyük bir elektrik yükü olur ve karşılıklı olarak itici olurlardı.

Elektrik yükünün korunmasına dair en iyi deneysel testler, elektrik yükünün daima korunmaması durumunda izin verilen parçacık bozunmasının aranmasıdır. Daha önce böyle bir bozunma görülmemiştir.[11] En iyi deneysel test, elektron bozunan bir nötrino ve tek bir fotonun çektiği enerjik foton aramalarından gelir:

 e → ν + γ  ortalama ömrü, 6,6×1028 yıldan daha büyüktür (%90 Güven düzeyi),[12][13]

fakat bu tek fotonlu bozunmaların, yük korunmasa bile asla gerçekleşmeyeceği teorik argümanlar vardır.[14] Yük kaybolma testleri, enerjik fotonlar olmadan bozunmalara, kendiliğinden bir pozitrona dönüşen elektron gibi olağandışı yük ihlal işlemlerine ve diğer boyutlara hareket eden elektrik yüküne karşı duyarlıdır.[15] Yük kaybolduğunda en iyi deneysel sınırlar:

 e → anythingortalama ömrü, 6,4×1024 yıldan daha büyüktür (%68 Güven düzeyi)[16]
n → p + ν + νkoruyucu olmayan bozunmalar, tüm nötron bozunmalarının 8 × 10−27'sinden daha küçüktür (%68 Güven düzeyi)[17]

Ayrıca bakınız

Kaynakça

  1. ^ a b Purcell, Edward M.; Morin, David J. (2013). Electricity and magnetism. 3rd. Cambridge University Press. s. 4. ISBN 9781107014022. 
  2. ^ S. Orito; M. Yoshimura (1985). "Can the Universe be Charged?". Physical Review Letters. 54 (22). ss. 2457-2460. Bibcode:1985PhRvL..54.2457O. doi:10.1103/PhysRevLett.54.2457. PMID 10031347. 
  3. ^ E. Masso; F. Rota (2002). "Primordial helium production in a charged universe". Physics Letters B. 545 (3-4). ss. 221-225. arXiv:astro-ph/0201248 $2. Bibcode:2002PhLB..545..221M. doi:10.1016/S0370-2693(02)02636-9. 
  4. ^ Heilbron, J.L. (1979). Electricity in the 17th and 18th centuries: a study of early Modern physics. University of California Press. s. 330. ISBN 978-0-520-03478-5. 27 Temmuz 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 1 Ağustos 2019. 
  5. ^ Purrington, Robert D. (1997). Physics in the Nineteenth Century. Rutgers University Press. s. 33. ISBN 978-0813524429. 
  6. ^ Bettini, Alessandro (2008). Introduction to Elementary Particle Physics. Birleşik Krallık: Cambridge University Press. ss. 164-165. ISBN 978-0-521-88021-3. 
  7. ^ A.S. Goldhaber; M.M. Nieto (2010). "Photon and Graviton Mass Limits". Reviews of Modern Physics. 82 (1). ss. 939-979. arXiv:0809.1003 $2. Bibcode:2010RvMP...82..939G. doi:10.1103/RevModPhys.82.939. ; see Section II.C Conservation of Electric Charge
  8. ^ S.Y. Chu (1996). "Gauge-Invariant Charge Nonconserving Processes and the Solar Neutrino Puzzle". Modern Physics Letters A. 11 (28). ss. 2251-2257. Bibcode:1996MPLA...11.2251C. doi:10.1142/S0217732396002241. 
  9. ^ S.L. Dubovsky; V.A. Rubakov; P.G. Tinyakov (2000). "Is the electric charge conserved in brane world?". Journal of High Energy Physics. August (8). ss. 315-318. arXiv:hep-ph/0007179 $2. Bibcode:1979PhLB...84..315I. doi:10.1016/0370-2693(79)90048-0. 
  10. ^ Patrignani, C. et al (Particle Data Group) (2016). "The Review of Particle Physics" (PDF). Chinese Physics C. 40 (100001). 21 Mart 2017 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 26 Mart 2017. 
  11. ^ Particle Data Group (Mayıs 2010). "Tests of Conservation Laws" (PDF). Journal of Physics G. 37 (7A). ss. 89-98. Bibcode:2010JPhG...37g5021N. doi:10.1088/0954-3899/37/7A/075021. 31 Mayıs 2011 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 1 Ağustos 2019. 
  12. ^ Agostini, M.; et al. (Borexino Coll.) (2015). "Test of Electric Charge Conservation with Borexino". Physical Review Letters. 115 (23). s. 231802. arXiv:1509.01223 $2. Bibcode:2015PhRvL.115w1802A. doi:10.1103/PhysRevLett.115.231802. PMID 26684111. 
  13. ^ Back, H.O.; et al. (Borexino Coll.) (2002). "Search for electron decay mode e → γ + ν with prototype of Borexino detector". Physics Letters B. 525 (1–2). ss. 29-40. Bibcode:2002PhLB..525...29B. doi:10.1016/S0370-2693(01)01440-X. 4 Ocak 2013 tarihinde kaynağından arşivlendi. 
  14. ^ L.B. Okun (1989). Comments on Testing Charge Conservation and Pauli Exclusion Principle (PDF). Comments on Nuclear and Particle Physics. World Scientific Lecture Notes in Physics. 19. ss. 99-116. doi:10.1142/9789812799104_0006. ISBN 978-981-02-0453-2. 23 Mart 2020 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 1 Ağustos 2019. 
  15. ^ R.N. Mohapatra (1987). "Possible Nonconservation of Electric Charge". Physical Review Letters. 59 (14). ss. 1510-1512. Bibcode:1987PhRvL..59.1510M. doi:10.1103/PhysRevLett.59.1510. PMID 10035254. 
  16. ^ P. Belli (1999). "Charge non-conservation restrictions from the nuclear levels excitation of 129Xe induced by the electron's decay on the atomic shell". Physics Letters B. 465 (1–4). ss. 315-322. Bibcode:1999PhLB..465..315B. doi:10.1016/S0370-2693(99)01091-6. 4 Ocak 2013 tarihinde kaynağından arşivlendi.  This is the most stringent of several limits given in Table 1 of this paper.
  17. ^ Norman, E.B.; Bahcall, J.N.; Goldhaber, M. (1996). "Improved limit on charge conservation derived from 71Ga solar neutrino experiments". Physical Review. D53 (7). ss. 4086-4088. Bibcode:1996PhRvD..53.4086N. doi:10.1103/PhysRevD.53.4086. Link is to preprint copy. 8 Haziran 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 1 Ağustos 2019. 

Konuyla ilgili yayınlar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Maxwell denklemleri</span>

Maxwell denklemleri Lorentz kuvveti yasası ile birlikte klasik elektrodinamik, klasik optik ve elektrik devrelerine kaynak oluşturan bir dizi kısmi türevli (diferansiyel) denklemlerden oluşur. Bu alanlar modern elektrik ve haberleşme teknolojilerinin temelini oluşturmaktadır. Maxwell denklemleri elektrik ve manyetik alanların birbirileri, yükler ve akımlar tarafından nasıl değiştirildiği ve üretildiğini açıklamaktadır. Bu denklemler sonra İskoç fizikçi ve matematikçi olan ve 1861-1862 yıllarında bu denklemlerin ilk biçimini yayımlayan James Clerk Maxwell' in ismi ile adlandırılmıştır.

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

<span class="mw-page-title-main">Elektrik alanı</span>

Elektriksel alan, kıvıl alan, elektrik alan veya elektrik alanı, elektriksel yükü veya manyetik alanı çevreleyen uzayın bir özelliği olup, içerisinde bulunan yüklü nesnelere elektriksel güç aracılığı ile etki eder. Kavram fiziğe Michael Faraday tarafından kazandırılmıştır.

<span class="mw-page-title-main">Akışkanlar dinamiği</span> hareket halindeki akışkanların (sıvılar ve gazlar) doğal bilimi

Fizik, fiziksel kimya ve mühendislikte akışkanlar dinamiği, akışkanların akışını tanımlayan akışkanlar mekaniğinin bir alt disiplinidir. Aerodinamik ve hidrodinamik dahil olmak üzere çeşitli alt disiplinleri vardır. Akışkanlar dinamiğinin, uçaklardaki kuvvetlerin ve momentlerin hesaplanması, boru hatları boyunca petrolün Kütle akış hızının belirlenmesi, hava durumu modellerinin tahmin edilmesi, uzaydaki bulutsuların anlaşılması ve fisyon silahı patlamasının modellenmesi dahil olmak üzere geniş bir uygulama yelpazesi vardır.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">Katı cisim dinamiği</span>

Katı-cisim dinamiği, dış kaynaklı kuvvetler karşısında hareket eden birbiri ile ilişkili sistemlerin analizini inceler. Her bir gövde için, cisimlerin katı olduğu ve bu nedenle uygulanan kuvvetler nedeni ile deforme olmadıkları, sistemi tanımlayan taşıma ve dönme parametrelerinin sayısını azaltarak analizi basitleştirmektedir.

Lorentz kuvveti, fizikte, özellikle elektromanyetizmada, elektromanyetik alanların noktasal yük üzerinde oluşturduğu elektrik ve manyetik kuvvetlerin bileşkesidir. Eğer q yük içeren bir parçacık bir elektriksel E ve B manyetik alanın var olduğu bir ortamda v hızında ilerliyor ise bir kuvvet hissedecektir. Oluşturulan herhangi bir kuvvet için, bir de reaktif kuvvet vardır. Manyetik alan için reaktif kuvvet anlamlı olmayabilir, fakat her durumda dikkate alınmalıdır.

<span class="mw-page-title-main">Gauss yasası</span>

Fizikte Gauss'un akı teoremi olarak da bilinen Gauss yasası, elektrik yükünün ortaya çıkan elektrik alanına dağılımına ilişkilendiren matematiksel bir yasadır. Söz konusu yüzey küresel yüzey gibi bir hacmi çevreleyen kapalı bir yüzey olabilir.

Akım yoğunluğu elektrik devresinde yoğunluğun bir ölçüsüdür. Vektör olarak tanımlanır ve elektrik akımının kesit alana oranıdır. SI'de akım yoğunluğu amper/metrekare veya coulomb/saniye/metrekare cinsinden ifade edilebilir.

<span class="mw-page-title-main">Elektromanyetik alan</span>

Elektromanyetik alan, Elektrik alanı'ndan ve Manyetik alan'dan meydana gelir.

<span class="mw-page-title-main">Klasik elektromanyetizma</span>

Klasik elektromanyetizm, klasik elektromıknatıslık ya da klasik elektrodinamik teorik fiziğin elektrik akımı ve elektriksel yükler arasındaki kuvvetlerin sonuçlarını inceleyen dalıdır. kuantum mekaniksel etkilerin ihmal edilebilir derecede küçük olmasını sağlayacak kadar büyük ölçütlü sistemler için elektromanyetik fenomenlerin mükemmel bir açıklamasını sunar.

<span class="mw-page-title-main">Liénard-Wiechert potansiyelleri</span>

Liénard-Wiechert potansiyelleri yüklü bir noktasal parçacığın hareketi esnasında oluşan klasik elektromanyetik etkiyi bir vektör potansiyeli ve bir skaler potansiyel cinsinden ifade eder. Maxwell denklemlerinin doğrudan bir sonucu olarak bu potansiyel relativistik olarak doğru, tam, zamana bağlı etkileri de içeren, noktasal parçacığın hareketine herhangi bir sınır konulmaksızın en genel durum için geçerli olan fakat kuantum mekaniğinin öngördüğü etkileri açıklayamayan elektromanyetik bir alan tanımlar. Dalga hareketi formunda yayılan elektromanyetik ışıma bu potansiyellerden elde edilebilir.

<span class="mw-page-title-main">Yer değiştirme akımı</span>

Elektromanyetizmada yer değiştirme akımı elektrik yer değiştirme alanının değişim oranıyla tanımlanan bir niceliktir. Yer değiştirme akımının birimi akım yoğunluğu cinsinden ifade edilir. Yer değiştirme akımı gerçek akımlar gibi manyetik alan üretir. Yer değiştirme akımı hareketli yüklerin yarattığı bir elektrik akımı değil; zamana bağlı olarak değişim gösteren elektrik alanıdır. Maddelerde, atomun içerisinde bulunan yüklerin küçük hareketlerinin de buna bir katkısı vardır ki buna dielektrik polarizasyon denir.

Fizik ve mühendislikte, kütle akış hızı, bir maddenin geçtiği belirli bir yüzeyden birim zamana geçen kütle miktarıdır. SI'daki birimi, kilogram bölü saniyedir. Yaygın kullanılan sembolü olmasına rağmen bazen μ kullanılır.

18. yy. ve sonrasında geliştirilmiş, genellikle vektörel mekanik olarak nitelendirilen ve orijinalinde Newton mekaniği olarak bilinen analitik mekanik, klasik mekaniğin matematiksel fizik kaynaklarıdır. Model harekete göre analitik mekanik, Newton’un vektörel enerjisinin yerine, hareketin iki skaler özelliği olan kinetik enerjiyi ve potansiyel enerjiyi kullanır. Bir vektör, yön ve nicelik ile temsil edilirken bir skaler, nicelik ile(yoğunluğu belirtirken) temsil edilir. Özellikle Lagrange mekaniği ve Hamilton mekaniği gibi analitik mekanik de, sorunları çözmek için bir sistemin kısıtlamalarının ve tamamlayıcı yollarının kavramını kullanarak klasik mekaniğin kullanım alanını etkili bir şekilde yapılandırır. Schrödinger, Dirac, Heisenberg ve Feynman gibi kuram fizikçileri bu kavramları kullanarak kuantum fiziğini ve onun alt başlığı olan kuantum alan teorisini geliştirdiler. Uygulamalar ve eklemelerle, Einstein’a ait kaos teorisine ve izafiyet teorisine ulaşmışlardır. Analitik mekaniğin çok bilindik bir sonucu, modern teorik fiziğin çoğunu kaplayan Noether teoremidir.

Matematiksel fizikte, hareket denklemleri, fiziksel sistemin hareket sürecindeki davranışını, zamanın bir fonksiyonu olarak tanımlar. Daha detaya girmek gerekirse; hareket denklemleri, fiziksel sistemin davranışını devinimsel değişkenler üzerinde tanımlanmış bir matematiksel fonksiyon takımı olarak izah eder. Bu değişkenler genellikle uzay koordinatları ve zamandan ibarettir, ama gerektiğinde momentum bileşenleri de kullanılır. En yaygın değişken seçeneği, fiziksel sistemin özelliklerini uygun şekilde tanımlayan değişkenlerden oluşan genelleştirilmiş koordinatlardır. Klasik mekanikte bu fonksiyonlar öklid uzayında tanımlanmıştır ama görelilikte eğilmiş uzay üzerindeki fonksiyon daha uygundur. Eğer sistemin dinamikleri biliniyor ise, bu fonksiyonları tanımlayan denklemler dinamiğin hareketini izah eden diferansiyel denklemlerin çözümleri olacaktır.

<span class="mw-page-title-main">Lagrange mekaniği</span> Klasik mekaniğin yeniden formüle edilmesi

Lagrange mekaniği, klasik mekaniğin yeniden formüle edilmesidir. İtalyan-Fransız matematikçi ve astronom Joseph-Louis Lagrange tarafından 1788’de geliştirilmiştir.

İstatistik fizikde,BBGKY hiyerarşisi (Bogoliubov–Born–Green–Kirkwood–Yvon hiyerarşisi, bazen Bogoliubov hiyerarşisi olarak alınır) çok sayıda etkileşen parçacıkdan oluşan bir sistemin dinamiklerini tanımlayan bir dizi denklemdir. BBGKY hiyerarşisinde S- parçacığı için denklem dağıtım fonksiyonu (olasılık yoğunluk fonksiyonu) (s + 1)-parçacık dağılım işlevi eşitlikli bir denklem zincirini içerir. Bu kuramsal sonuç, Bogoliubov, Born, Green, Kirkwood ve Yvon'un ardından isimlendirilmiştir.

Hamilton mekaniği klasik mekaniğin tekrar formüle edilmesiyle geliştirilmiş ve Hamilton olmayan klasik mekanik ile aynı sonuçları öngörmüş bir teoridir. Teoriye daha soyut bir bakış açısı kazandıran Hamilton mekaniği klasik mekaniğe kıyasla farklı bir matematiksel formülasyon kullanmaktadır. Tarihi açıdan önemli bir çalışma olan Hamilton mekaniği ileriki yıllarda istatistiksel mekanik ve kuantum mekaniği konularının da geliştirilmesine önemli katkılarda bulunmuştur.

Fizikte Einstein ilişkisi; 1904'te William Sutherland'in, 1905'te Albert Einstein'ın ve 1906'da Marian Smoluchowski'nin Brown hareketi üzerine yaptıkları çalışmalarında bağımsız olarak ortaya koydukları önceden beklenmedik bir bağlantıdır. Denklemin daha genel biçimi: