İçeriğe atla

Yuvarlanma eğrisi

Eğrilerin diferansiyel geometrisinde, bir rulet veya yuvarlanma eğrisi (İngilizceroulette), sikloidler, episikloidler, hiposikloidler, trokoidler, epitrokoidler, hipotrokoidler ve gereçleri (involütleri) genelleştiren bir eğri türüdür.

Tanım

Gayriresmî tanım

Yeşil bir parabol, sabit kalan eşit mavi bir parabol boyunca yuvarlanır. Üreteç, yuvarlanan parabolün tepe noktasıdır ve kırmızı ile gösterilen yuvarlanma eğrisini tanımlar. Bu durumda ortaya çıkan yuvarlanma eğrisi bir Diocles sisoididir.[1]

Kabaca ifade etmek gerekirse, yuvarlanma eğrisi, belirli bir eğriye bağlı bir nokta ("üreteç" veya "kutup" olarak adlandırılır) tarafından, bu eğri sabit olan ikinci bir eğri boyunca kaymadan yuvarlanırken tanımlanan eğridir. Daha açık bir ifadeyle, hareketli bir düzleme bağlı bir eğri verildiğinde, eğri aynı alanı işgal eden sabit bir düzleme bağlı belirli bir eğri boyunca kaymadan yuvarlanır, o zaman hareketli düzleme bağlı bir nokta, sabit düzlemde yuvarlanma eğrisi veya rulet adı verilen bir eğriyi tanımlar.

Özel durumlar ve ilgili kavramlar

Yuvarlanan eğrinin bir doğru ve üretecin doğru üzerinde bir nokta olduğu durumda, yuvarlanma eğrisi sabit eğrinin bir involütü olarak adlandırılır. Eğer yuvarlanan eğri bir çember ve sabit eğri bir doğru ise, o zaman yuvarlanma eğrisi bir trokoiddir. Eğer bu durumda, nokta çember üzerinde yer alıyorsa, yuvarlanma eğrisi bir sikloiddir.

İlgili bir kavram glissette, verilen bir eğriye bağlı bir noktanın verilen iki (veya daha fazla) eğri boyunca kayarken tanımladığı eğridir.

Resmi tanım

Biçimsel olarak, eğriler Öklid düzleminde diferansiyellenebilir eğriler olmalıdır. "Sabit eğri" değişmez tutulur; "yuvarlanan eğri" bir sürekli kongrüans dönüşümüne tabi tutulur, öyle ki her zaman eğriler, her iki eğri boyunca alındığında aynı hızla hareket eden bir temas noktasında teğet olurlar (bu kısıtlamayı ifade etmenin başka bir yolu da iki eğrinin temas noktasının kongrüans dönüşümünün anlık dönme merkezi olmasıdır). Ortaya çıkan yuvarlanma eğrisi, aynı uyum dönüşümleri kümesine tabi tutulan üretecin locusu tarafından oluşturulur.

Orijinal eğrileri karmaşık düzlemde eğriler olarak modelleyerek, , yuvarlanan () ve sabit () eğrilerinin iki doğal parametrizasyonları olsun, öyle ki , ve tüm için. üzerinde yuvarlandıkça üretecinin yuvarlanma eğrisi daha sonra aşağıdaki eşleme tarafından verilir:

Genellemeler

Yuvarlanan eğriye tek bir nokta yerine, verilen başka bir eğri hareketli düzlem boyunca taşınırsa, bir uyumlu eğriler ailesi üretilir. Bu ailenin zarfı yuvarlanma eğrisi veya rulet olarak da adlandırılabilir.

Daha yüksek uzaylarda yuvarlanma eğrileri kesinlikle hayal edilebilir ancak teğetlerden daha fazlasını hizalamak gerekir.

Örnek

Eğer sabit eğri bir zincir eğrisi (İngilizcecatenary) ve yuvarlanan eğri (İngilizceroulette) bir doğru ise, şu sonuca varırız:

Doğrunun parametrelendirilmesi şu şekilde seçilir:

Yukarıdaki formülü uygulayarak şunu elde ederiz:

Eğer p = -i ise ifadenin sabit bir hayali kısmı vardır (yani -i) ve rulet yatay bir çizgidir. Bunun ilginç bir uygulaması, bir kare tekerleğin zincir eğrisi yaylarının eşleştirilmiş bir serisi olan bir yolda zıplamadan yuvarlanabilmesidir.

Yuvarlanma eğrileri listesi

Sabit eğri Hareketli eğri Üreteç noktası Rulet
(Yuvarlanma eğrisi)
Herhangi bir eğriDoğruDoğru üzerinde bir nokta Eğrinin involutü
DoğruHerhangiHerhangiSiklogon
DoğruÇemberHerhangiTrokoid
DoğruÇemberÇember üzerinde bir nokta Sikloid
DoğruKonik kesit Koniğin merkezi Sturm yuvarlanan eğrisi[2]
DoğruKonik kesit Koniğin odağı Delaunay yuvarlanan eğrisi[3]
DoğruParabolParabolün odağı Zincir eğrisi[4]
DoğruElipsElipsin odağı Eliptik zincir eğrisi[4]
DoğruHiperbolHiperbolün odağı Hiperbolik zincir eğrisi[4]
DoğruHiperbolHiperbolün merkeziDikdörtgen elastika[2][]
DoğruSiklosikloid Merkez Elips[5]
ÇemberÇemberHerhangiOrtalanmış trokoid[6]
Bir çemberin dışında ÇemberHerhangiEpitrokoid
Bir çemberin dışında ÇemberÇemberin üzerinde bir nokta Episikloid
Bir çemberin dışında Aynı yarıçaplı çemberHerhangiLimaçon
Bir çemberin dışında Aynı yarıçaplı çemberÇemberin üzerinde bir nokta Kardioid
Bir çemberin dışında Yarıçapın yarısı kadar çemberÇemberin üzerinde bir nokta Nefroid
Bir çemberin içinde ÇemberHerhangiHipotrokoid
Bir çemberin içinde ÇemberÇemberin üzerinde bir nokta Hiposikloid
Bir çemberin içinde Yarıçapın üçte biri kadar çemberÇemberin üzerinde bir nokta Deltoid
Bir çemberin içinde Yarıçapın dörtte biri kadar çemberÇemberin üzerinde bir nokta Astroid
ParabolTers yönde parametrelendirilmiş eşit parabol Parabolün tepe noktası Diocles Sisoidi[1]
Zincir eğrisi DoğruBkz. yukarıdaki örneklerDoğru

Ayrıca bakınız

  • Yuvarlanma
  • Dişli
  • Locus
  • Süperpozisyon ilkesi
  • Spirograf
  • Tusi çifti
  • Rosetta (yörünge)

Notlar

  1. ^ a b ""Cissoid" on www.2dcurves.com". 30 Kasım 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 22 Aralık 2023. 
  2. ^ a b ""Sturm's roulette" on www.mathcurve.com". 16 Eylül 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 22 Aralık 2023. 
  3. ^ ""Delaunay's roulette" on www.mathcurve.com". 13 Eylül 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 22 Aralık 2023. 
  4. ^ a b c ""Delaunay's roulette" on www.2dcurves.com". 12 Şubat 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 22 Aralık 2023. 
  5. ^ ""Roulette with straight fixed curve" on www.mathcurve.com". 13 Eylül 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 22 Aralık 2023. 
  6. ^ ""Centered trochoid" on mathcurve.com". 21 Eylül 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 22 Aralık 2023. 

Kaynakça

Konuyla ilgili okumalar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. a ve b sayıları gerçek olursa karmaşık sayılar şu biçimde gösterilirler:

<span class="mw-page-title-main">Hiperbolik sayılar</span>

Gerçel sayılarda olmayan ve karesi 1 olan bir sayının kümeye katılmasıyla üretilen kümeye hiperbolik sayılar kümesi denir. Tıpkı karmaşık sayılarda olduğu gibi, hiperbolik sayılar şeklinde yazılabilen sayılardır, ancak karmaşık sayılardan tek farkı hiperbolik birim denilen sayının

Matematiğin bir alt dalı olan karmaşık analizde, Liouville teoremi tam fonksiyonların sınırlılığıyla ilgili temel bir teoremdir.

<span class="mw-page-title-main">Kalıntı teoremi</span>

Karmaşık analizdeki kalıntı teoremi veya bilinen bir diğer adıyla rezidü teoremi, analitik fonksiyonların kapalı eğriler üzerindeki çizgi integrallerini bulmak için kullanılan önemli bir araçtır ve ayrıca sık bir şekilde gerçel integralleri bulmak için de kullanılır. Cauchy integral teoremini ve Cauchy integral formülünü genelleştirir.

<span class="mw-page-title-main">Açıkorur gönderim</span>

Matematikte açıkorur gönderim ya da açıkorur dönüşüm tanımlı olduğu kümenin her noktasında yerel olarak açıları koruyan bir fonksiyona verilen addır. Bu tanımı haliyle, açıkorur gönderimlerin her zaman uzunlukları koruması ya da yönleri koruması beklenmez.

<span class="mw-page-title-main">Çizgi integrali</span>

Matematikte bir çizgi integrali, integrali alınan fonksiyonun bir eğri boyunca değerlendirildiği integraldir. Çeşitli farklı çizgi integralleri kullanılmaktadır. Kapalı eğrinin kullanıldığı durumlarda integrale kontür integrali denildiği de olmaktadır.

Hiperbolik düzlemin dönüşüm grubu, genel Möbius grubunun alt grubu olup ile gösterilir. Üst yarı düzlemi koruyan bu grup Riemann küresi üzerinde tanımlıdır. nin etkisi altında hiperbolik doğrular yine hiperbolik doğrulara giderken, herhangi iki eğri arasındaki açının mutlak değerinin, hiperbolik uzunluk ve uzaklığın korunması grubun karakteristik özelliklerinden bazılarıdır. Bu özelliklerden önemli bir sonuca, hiperbolik düzlemin dönüşüm grubuyla hiperbolik yarı düzlemin izometri grubunun eşyapılı olduğuna, varmak mümkündür.

<span class="mw-page-title-main">Hiperbolik fonksiyon</span>

Matematikte, hiperbolik fonksiyonlar sıradan trigonometrik fonksiyonların analogudur. Temel hiperbolik fonksiyonlar hiperbolik sinüs "sinh", hiperbolik kosinüs "cosh", bunlardan türetilen hiperbolik tanjant "tanh" ve benzer fonksiyonlardır. Ters hiperbolik fonksiyonlar alan hiperbolik sinüsü "arsinh" ve benzeri fonksiyonlardır.

Fizikte, Lorentz dönüşümü adını Hollandalı fizikçi Hendrik Lorentz'den almıştır. Lorentz ve diğerlerinin referans çerçevesinden bağımsız ışık hızının nasıl gözlemleneceğini açıklama ve elektromanyetizma yasalarının simetrisini anlama girişimlerinin sonucudur. Lorentz dönüşümü, özel görelilik ile uyum içerisindedir. Ancak özel görelilikten daha önce ortaya atılmıştır.

<span class="mw-page-title-main">Birim hiperbol</span>

Geometride, Kartezyen düzleminde formülünü sağlayan (x,y) noktalar kümesine birim hiperbol denir. Belirsiz dikey gruplar çalışmasında, birim hiperbol bir alternatif radial uzunluk için bir temel oluşturur.

18. yy. ve sonrasında geliştirilmiş, genellikle vektörel mekanik olarak nitelendirilen ve orijinalinde Newton mekaniği olarak bilinen analitik mekanik, klasik mekaniğin matematiksel fizik kaynaklarıdır. Model harekete göre analitik mekanik, Newton’un vektörel enerjisinin yerine, hareketin iki skaler özelliği olan kinetik enerjiyi ve potansiyel enerjiyi kullanır. Bir vektör, yön ve nicelik ile temsil edilirken bir skaler, nicelik ile(yoğunluğu belirtirken) temsil edilir. Özellikle Lagrange mekaniği ve Hamilton mekaniği gibi analitik mekanik de, sorunları çözmek için bir sistemin kısıtlamalarının ve tamamlayıcı yollarının kavramını kullanarak klasik mekaniğin kullanım alanını etkili bir şekilde yapılandırır. Schrödinger, Dirac, Heisenberg ve Feynman gibi kuram fizikçileri bu kavramları kullanarak kuantum fiziğini ve onun alt başlığı olan kuantum alan teorisini geliştirdiler. Uygulamalar ve eklemelerle, Einstein’a ait kaos teorisine ve izafiyet teorisine ulaşmışlardır. Analitik mekaniğin çok bilindik bir sonucu, modern teorik fiziğin çoğunu kaplayan Noether teoremidir.

<span class="mw-page-title-main">Eliptik eğri kriptografisi</span>

Eliptik Eğri Kriptolojisi, sonlu cisimler üzerindeki eliptik eğrilerin cebirsel topolojisine dayanan bir açık anahtar şifrelemesidir. Eliptik Eğri Kriptolojisi, diğer şifrelemeler göre daha küçük anahtar boyuna ihtiyaç duyar.

<span class="mw-page-title-main">Kepler yörüngesi</span> üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklayan kavram

Gök mekaniği olarak, Kepler yörüngesi üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklar.. Kepler yörüngesi yalnızca nokta iki cismin nokta benzeri yerçekimsel çekimlerini dikkate alır, atmosfer sürüklemesi, güneş radyasyonu baskısı, dairesel olmayan cisim merkezi ve bunun gibi bir takım şeylerin diğer cisimlerle girdiği çekim ilişkileri nedeniyle ihmal eder. Böylece Kepler problemi olarak bilinen iki-cisim probleminin, özel durumlara bir çözüm olarak atfedilir. Klasik mekaniğin bir teorisi olarak, aynı zamanda genel görelilik etkilerini dikkate almaz. Kepler yörüngeleri çeşitli şekillerde altı yörünge unsurları içine parametrize edilebilir.

<span class="mw-page-title-main">Non-uniform rational B-spline</span>

Düzgün olmayan rasyonel temelli eğri, eğrileri ve yüzeyleri oluşturmak ve temsil etmek için bilgisayar grafiklerinde yaygın olarak kullanılan matematiksel bir modeldir. Hem analitik hem de modellenmiş şekilleri işlemek için büyük esneklik ve hassasiyet sunar. NURBS yaygın olarak bilgisayar destekli tasarım, imalat ve mühendislikte kullanılır ve IGES, STEP, ACIS ve PHIGS gibi çok sayıda endüstri çapında standardın parçasıdır. NURBS araçları ayrıca çeşitli 3B modelleme ve animasyon yazılım paketlerinde de bulunur. NURBS yüzeyleri, üç boyutlu uzayda bir yüzeye eşlenen iki parametrenin işlevleridir. Yüzeyin şekli kontrol noktaları ile belirlenir. NURBS yüzeyleri, kompakt bir biçimde basit geometrik şekilleri temsil edebilir. T-spline'lar ve alt bölme yüzeyleri, NURBS yüzeylerine kıyasla kontrol noktalarının sayısını iki kat azalttığı için karmaşık organik şekiller için daha uygundur. NURBS eğrilerini ve yüzeylerini düzenlemek oldukça sezgisel ve öngörülebilirdir. Kontrol noktaları her zaman doğrudan eğriye / yüzeye bağlanır veya bir lastik bantla bağlanmış gibi davranır. Kullanıcı arayüzünün türüne bağlı olarak, düzenleme, Bézier eğrileri için en açık ve yaygın olan bir elemanın kontrol noktaları aracılığıyla veya spline modelleme veya hiyerarşik düzenleme gibi daha yüksek seviyeli araçlar aracılığıyla gerçekleştirilebilir.

<span class="mw-page-title-main">Eş iç teğet çemberler teoremi</span>

Geometride, eş iç teğet çemberler teoremi bir Japon Sangaku'sundan türetilir ve aşağıdaki yapıya ilişkindir: belirli bir noktadan belirli bir çizgiye bir dizi ışın çizilir, öyle ki bitişik ışınlar ve taban çizgisi tarafından oluşturulan üçgenlerin iç teğet çemberleri eşittir. Çizimde eş mavi çemberler, açıklandığı gibi ışınlar arasındaki mesafeyi tanımlar.

<span class="mw-page-title-main">Episikloid</span> Matematikte bir yuvarlanma eğrisi

Geometride, bir episikloid, sabit bir çemberin etrafında kaymadan yuvarlanan bir çemberin çevresi üzerinde seçilen bir noktanın yolunu izleyerek üretilen bir düzlem eğrisidir -buna episikl (epicycle) denir. Bu, yuvarlanma eğrisinin özel bir türüdür.

<span class="mw-page-title-main">Düzlemsel eğri</span>

Matematikte, bir düzlem eğrisi veya düzlemsel eğri, bir düzlem içinde yer alan bir eğri olup söz konusu düzlem, bir Öklid düzlemi, bir afin düzlem veya bir projektif düzlem olabilir. En sık çalışılan durumlar, düzgün düzlem eğrileri ve cebirsel düzlem eğrisidir.

<span class="mw-page-title-main">Deltoid eğrisi</span> düzlem eğri, 3-çentikli hiposikloid

Geometride, triküspoid eğri veya Steiner eğrisi olarak da bilinen deltoid eğri, üç çentikten oluşan bir hiposikloiddir. Başka bir deyişle, bir çemberin çevresi üzerindeki bir noktanın, yarıçapının üç veya bir buçuk katı olan bir çemberin içinde kaymadan yuvarlanırken oluşturduğu yuvarlanma eğrisidir. Adını, benzediği büyük Yunanca delta (Δ) harfinden alır.

<span class="mw-page-title-main">Hipotrokoid</span> Bir dairenin dışındaki bir noktanın başka bir dairenin içinde yuvarlanmasıyla izlenen eğri

Geometride hipotrokoid, R yarıçaplı sabit bir çemberin içinde yuvarlanan r yarıçaplı bir çembere bağlı olan bir nokta tarafından izlenen bir yuvarlanma eğrisidir, burada nokta iç çemberin merkezinden d kadar bir mesafededir.