İçeriğe atla

Yuvarlama

Yuvarlama, bir sayıyı daha kısa ve basit olan en yakın sayıyla değiştirmektir. 23,4476 doları $23,45 dolar ile, 312/937 kesrini 1/3 ile veya π sayısını 3 ile değiştirmek örnek olarak verilebilir.[1][2] Yuvarlama günlük hayatta daha doğru değer elde etmektense işlemleri hızlandırmak için kullanılır.[3] Eğer sayı buçukluysa hem daha büyük sayıya hem de daha küçük sayıya yuvarlanabilir.[4] Örneğin 1,5 sayısı hem 1'e hem de 2'ye yuvarlanabilmektedir.[5] Bu yuvarlamalar basamak sayısına göre değişiklik göstermektedir. Bunlar birler, onlar, yüzler... olarak devam eder.

Öğretilmesi

Türkiye'de yuvarlama 3. sınıf ile 6. sınıf arasındaki çocuklara kazanım olarak verilir ve öğretilir.[6] Birleşik Krallık'ta 4. sınıf ile 6. sınıf arasında öğretilir.[7]

Kaynakça

  1. ^ Çekirdekçi, Sitki; Şengül, Sare; Doğan, M. Cihangir (18 Ekim 2016). "4. SINIF ÖĞRENCİLERİNİN SAYI HİSSİ İLE MATEMATİK BAŞARILARI ARASINDAKİ İLİŞKİNİN İNCELENMESİ". Qualitative Studies. 11 (4): 48-66. 4 Şubat 2023 tarihinde kaynağından arşivlendi. 
  2. ^ Ivy, Jessica T.; Bush, Sarah B.; Dougherty, Barbara J. (1 Ocak 2020). "Stacking the Deck: Reversibility and Reasoning". Mathematics Teacher: Learning and Teaching PK-12 (İngilizce). 113 (1): 65-68. doi:10.5951/MTLT.2019.0027. ISSN 0025-5769. 
  3. ^ "Using Rounding in Real Life Situations" (PDF). Twinkl. 21 Eylül 2020 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 28 Aralık 2020. 
  4. ^ Maxfield, Clive (22 Haziran 2006). "Rounding Algorithms 101 Redux". EE Times. 28 Ağustos 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 28 Aralık 2020. 
  5. ^ Godfrey, Margaret (1978). "Teaching How to Round Numbers". The Mathematics Teacher. 71 (8): 674-675. ISSN 0025-5769. 
  6. ^ "MATEMATİK DERSİ ÖĞRETİM PROGRAMI - İlkokul ve Ortaokul 1, 2, 3, 4, 5, 6, 7 ve 8. Sınıflar" (PDF). Türkiye Cumhuriyeti Millî Eğitim Bakanlığı. 2018. 19 Eylül 2020 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 28 Aralık 2020. 
  7. ^ "The national curriculum in England" (PDF). Department for Education. Assets publishing service. Eylül 2013. 18 Nisan 2018 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 28 Aralık 2020. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Matematik</span> nicelik, yapı, uzay ve değişim gibi konularla ilgilenen bilim dalı

Matematik ; sayılar, felsefe, uzay ve fizik gibi konularla ilgilenir. Matematikçiler ve filozoflar arasında matematiğin kesin kapsamı ve tanımı konusunda görüş ayrılığı vardır.

Sayı, sayma, ölçme ve etiketleme için kullanılan bir matematiksel nesnedir. En temel örnek, doğal sayılardır. Sayılar, sayı adı (numeral) ile dilde temsil edilebilir. Daha evrensel olarak, tekil sayılar rakam adı verilen sembollerle temsil edilebilir; örneğin, "5" beş sayısını temsil eden bir rakamdır. Yalnızca nispeten az sayıda sembolün ezberlenebilmesi nedeniyle, temel rakamlar genellikle bir rakam sisteminde organize edilir, bu da herhangi bir sayıyı temsil etmenin organize bir yoludur. En yaygın rakam sistemi Hint-Arap rakam sistemidir, bu sistem on temel sayısal sembol, yani rakam kullanılarak herhangi bir negatif olmayan tam sayının temsil edilmesine olanak tanır. Sayılar sayma ve ölçme dışında, etiketlerde, sıralamada ve kodlarda kullanılmak için de sıklıkla kullanılır. Yaygın kullanımda, bir rakam ile temsil ettiği sayı net bir şekilde ayrılmaz.

<span class="mw-page-title-main">Tam sayı</span> sıfırın sağında bulunan sayılar büyükken solunda bulunan sayılar küçüktür

Tam sayılar, sayılar kümesinde yer alan sıfır (0), pozitif yönde yer alan doğal sayılar ve bunların negatif değerlerinden oluşan negatif sayılardan oluşan sayı kümesidir.

<span class="mw-page-title-main">Leopold Kronecker</span> Sayılar teorisi ve cebir üzerine çalışan Alman matematikçi (1823-1891)

Leopold Kronecker sayı teorisi, cebir ve mantık üzerine çalışan bir Alman matematikçiydi. Georg Cantor'un küme teorisi üzerine çalışmalarını eleştirdi ve Weber (1893) tarafından "Almanca: Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk " söylemiyle alıntılandı. Kronecker, Ernst Kummer'in öğrencisi ve ömür boyu arkadaşıydı.

<span class="mw-page-title-main">Asal sayı</span> sadece iki pozitif tam sayı böleni olan doğal sayılardır

Bir asal sayı, yalnızca 1'den büyük olup kendisinden küçük iki doğal sayının çarpımı olarak ifade edilemeyen bir doğal sayıdır. 1'den büyük ve asal olmayan doğal sayılara bileşik sayı adı verilir. Örneğin, 5 bir asal sayıdır çünkü onu bir çarpım olarak ifade etmenin mümkün olan yolları, 1 × 5 veya 5 × 1, yalnızca 5 sayısını içermektedir. Ancak, 4 bir bileşik sayıdır çünkü bu, her iki sayının da 4'ten küçük olduğu bir çarpım şeklindedir. Asal sayılar, aritmetiğin temel teoreminden ötürü sayı teorisi alanında merkezi öneme sahiptir: 1'den büyük her doğal sayı, ya bir asal sayıdır ya da asal sayıların çarpımı olarak, sıralamalarından bağımsız bir şekilde, benzersiz olarak çarpanlarına ayrılabilir.

<span class="mw-page-title-main">Parite (matematik)</span> hh

Parite, matematikte herhangi bir tam sayının çift ya da tek olması durumudur. Çift sayılar, 2 ile kalansız bölünebilen sayılardır. Tek sayılar ise 2 ile kalansız bölünemeyen sayılardır. Örneğin onluk sistemde 4 ve 8 rakamlarının her ikisi de çift olduğu için "aynı pariteye sahip" kabul edilirler.

▪ Çift doğal sayılar: 0, 2, 4, 6, 8,...
▪ Tek doğal sayılar: 1, 3, 5, 7, 9,...
▪ 2n = 0 eşitliğini sağlayan bir tam sayı mevcuttur: 2 × 0 = 0.
▪ 2n + 1 = 0 eşitliğini sağlayacak bir n tam sayısı yoktur.
▪ Birden fazla basamaklı sayıların birler basamağında 0'ın olması, bu sayıların asal çarpanları arasında 2 ve 5'in olduğunu, dolayısıyla çift sayı olduklarını gösterir.
<span class="mw-page-title-main">Toplama</span> aritmetik işlem

Toplama işlemi dört ana aritmetik işlemden biridir. Diğer aritmetik işlemler çıkarma, çarpma ve bölmedir. İki doğal sayının toplaması sayı değerlerinin toplamını üretir. Yandaki resimdeki örnek, toplamda beş elma oluşturan üç elma ve iki elmanın toplamasını göstermektedir. Bu gözlem, matematik ifadesi ile "3 + 2 = 5" olarak ifade edilir

IEEE Kayan Nokta Aritmetiği Standardı kayan noktalı sayıların gösteriminde en çok kullanılan standarttır. İkilik sistemdeki sayılar bilimsel gösterim ile gösterildikten sonra işaret, üst ve anlamlı kısımdan oluşan üç parça şeklinde ifade edilebilirler. Bu gösterime sonsuz, sayı değil ve sıfırın gösterimi dahildir. IEEE 754 standardına göre sayılar tek duyarlı ve çift duyarlı şekilde gösterilebilirler.

<span class="mw-page-title-main">Küme</span> matematiksel anlamda tanımsız bir kavramdır. Bu kavram "nesneler topluluğu veya yığını" olarak yorumlanabilir.

Küme, matematikte farklı nesnelerin topluluğu veya yığını olarak tanımlanmaktadır. Bu tanımdaki "nesne" soyut ya da somut bir şeydir. Fakat her ne olursa olsun iyi tanımlanmış olan bir şeyi, bir eşyayı ifade etmektedir. Örneğin, "Tüm canlılar topluluğu", "Dilimiz alfabesindeki harflerin topluluğu", "Masamın üzerindeki tüm kâğıtlar" tümcelerindeki nesnelerin anlaşılabilir, belirgin oldukları, kısaca iyi tanımlı oldukları açıkça ifade edilmektedir. Dolayısıyla bu tümcelerin her biri bir kümeyi tarif etmektedir. O halde, matematikte "İyi tanımlı nesnelerin topluluğuna küme denir." biçiminde bir tanımlama yapılmaktadır.

<span class="mw-page-title-main">Yunan matematiği</span> Eski Yunanların Matematiği

Yunan matematiği, Doğu Akdeniz kıyılarında MÖ 7. yüzyıldan MS 4. yüzyıla kadar uzanan Arkaik dönemden Helenistik ve Roma dönemlerine kadar yazılan matematik metinleri ile ortaya çıkan fikirleri ifade eder. Yunan matematikçiler, İtalya'dan Kuzey Afrika'ya tüm Doğu Akdeniz'e yayılmış şehirlerde yaşadılar, ancak kültür ve dil açısından birleştiler. "Matematik" kelimesinin kendisi Antik Yunancadan türemiştir: Grekçe: μάθημα: máthēma Yunanca telaffuz: [má.tʰɛː.ma] Yunanca telaffuz: [ˈma.θi.ma], "eğitim konusu" anlamına gelir. Kendi iyiliği için matematik çalışması ve genelleştirilmiş matematik teorilerinin ve kanıtlarının kullanılması, Yunan matematiği ile önceki uygarlıkların matematiği arasındaki önemli bir farktır.

<span class="mw-page-title-main">Alan Baker</span> İngiliz matematikçi (1939-2018)

Alan Baker, sayı teorisindeki etkili yöntemler, özellikle de transandantal sayı teorisinden doğan konular üzerine yaptığı çalışmalarla tanınan İngiliz bir matematikçiydi.

<span class="mw-page-title-main">Julia Robinson</span> Amerikalı matematikçi (1919 – 1985)

Julia Hall Bowman Robinson, hesaplanabilirlik teorisi ve hesaplama karmaşıklığı teorisi alanlarına -özellikle karar problemlerine olan katkılarından ötürü tanınan Amerikalı bir matematikçiydi. Hilbert'in 10. problemi üzerine çalışması nihai çözümünde çok önemli bir rol oynadı. Robinson bir 1983 MacArthur Üyesiydi.

<span class="mw-page-title-main">Orta Çağ İslam matematiği</span> yaklaşık 622 ile 1600 yılları arasında İslam medeniyeti altında korunan ve geliştirilen matematiğin bütünü

İslam'ın Altın Çağı'nda matematik, özellikle 9. ve 10. yüzyıllarda, Yunan matematiği ve Hint matematiği üzerine inşa edilmiştir. Ondalık basamak-değer sisteminin ondalık kesirleri içerecek şekilde tam olarak geliştirilmesi, ilk sistematik cebir çalışması (Hârizmî tarafından yazılan Cebir ve Denklem Hesabı Üzerine Özet Kitap adlı eser ve geometri ve trigonometride önemli ilerlemeler kaydedilmiştir.

<span class="mw-page-title-main">Matematik tarihi</span> matematik biliminin tarihi

Matematik tarihi, öncelikle matematikteki keşiflerin kökenini araştıran ve daha az ölçüde ise matematiksel yöntemleri ve geçmişin notasyonunu araştıran bir bilimsel çalışma alanıdır. Modern çağdan ve dünya çapında bilginin yayılmasından önce, yeni matematiksel gelişmelerin yazılı örnekleri yalnızca birkaç yerde gün ışığına çıktı. MÖ 3000'den itibaren Mezopotamya eyaletleri Sümer, Akad, Asur, Eski Mısır ve Ebla ile birlikte vergilendirmede, ticarette, doğayı anlamada, astronomide ve zamanı kaydetmede/takvimleri formüle etmede aritmetik, cebir ve geometri kullanmaya başladı.

Eski Mısır matematiği, Eski Mısır'da yaklaşık MÖ 3000 ila 300 yılları arasında, Eski Mısır Krallığı'ndan kabaca Helenistik Mısır'ın başlangıcına kadar geliştirilen ve kullanılan matematiktir. Eski Mısırlılar, saymak ve genellikle çarpma ve kesirleri içeren yazılı matematik problemlerini çözmek için bir sayı sistemi kullandılar. Mısır matematiğinin kanıtı, papirüs üzerine yazılmış, hayatta kalan az sayıda kaynakla sınırlıdır. Bu metinlerden, eski Mısırlıların, mimari mühendislik için yararlı olan üç boyutlu şekillerin yüzey alanını ve hacmini belirlemek gibi geometri kavramlarını ve sabit kesen yöntemi ve ikinci dereceden denklemler gibi cebir kavramlarını anladıkları bilinmektedir.

Amy Shell-Gellasch matematikçi, matematik tarihçisi yazar ve editördür. 2013'ten 2018'e kadar Smithsonian Ulusal Amerikan Tarihi Müzesi'nde araştırma yaptı ve burada Smithsonian'ın çevrimiçi koleksiyonları için matematiksel araç koleksiyonları hazırladı. Araştırmaları matematik tarihi ve öğretimdeki kullanımları üzerinedir.

<span class="mw-page-title-main">Babil rakamları</span>

Asur-Keldani Babil çivi yazısı rakamları, kalıcı bir kayıt oluşturmak için, sertleşmek üzere güneşe maruz bırakılacak yumuşak bir kil tablete bir işaret yapmak için, kamıştan yapılmış kama uçlu bir kalem kullanılarak Çivi yazısıyla yazılmıştır.

<span class="mw-page-title-main">Dönüşüm geometrisi</span>

Matematikte, dönüşüm geometrisi veya dönüşümsel geometri, geometrik dönüşüm gruplarına ve bunların içindeki değişmez özelliklere odaklanarak geometri çalışmalarına verilen matematiksel ve pedagojik yaklaşımın adıdır. Teoremleri ispatlamaya odaklanan Öklid geometrisinin klasik sentetik geometri yaklaşımına karşıdır.

Mathematics Genealogy Project (MGP), matematikçilerin akademik soyağacı için web tabanlı bir veri tabanıdır. 31 Aralık 2021'e kadar, araştırma düzeyinde matematiğe katkıda bulunan 274.575 matematik bilimcisi hakkında bilgi içeriyordu. Tipik bir matematikçi için proje girişinde mezuniyet yılı, tez başlığı, alma mater, doktora danışmanı ve doktora öğrencileri bulunur.

<span class="mw-page-title-main">David Eugene Smith</span> Amerikalı matematikçi (1860 – 1944)

David Eugene Smith Amerikalı bir matematikçi, eğitimci ve editördü.