İçeriğe atla

Yinelemeli sinir ağı

Yinelemeli sinir ağı, düğümler arası bağların zamansal bir dizi doğrultusunda yönlü çizge oluşturduğu bir yapay sinir ağı çeşididir. Yaygın olarak İngilizce kısaltması olan RNN (İngilizceRecurrent neural network) olarak anılır. İleri beslemeli sinir ağından türetilen RNN yöntemi, bir iç durum belleği kullanarak değişik uzunluktaki dizileri işleyebilir.[1][2][3] Bu sayede yazı tanıma[4] ve konuşma tanıma[5][6] gibi problemlere uygulanabilir. Teorik olarak Turing makinesine denk (Turing-complete) olan yinelemeli sinir ağları, herhangi uzunluktaki bir girdiyi işleyebilen herhangi bir programı çalıştırabilir.[7]

Tarihçe

Yinelemeli sinir ağları David Rumelhart'ın 1986 yılındaki çalışmasına dayanır.[8] Hopfield ağı denen özel bir RNN türü de John Hopfield tarafından 1982 yılında geliştirilmiştir. 1993 yılında, bir RNN çalışması 1000'den fazla katman gerektiren birçok derin öğrenme görevini başarmıştır.[9] Long short-term memory (LSTM) ağları Hochreiter ve Schmidhuber tarafından 1997 yılında geliştirilmiş ve çeşitli uygulama alanlarında en iyi performansları kaydetmiştir.[10]

Çeşitleri

Birçok farklı RNN mimarisi vardır.

Tam yinelemeli

Bir yinelemeli sinir ağı özyinelemeli bağlantılarla (sol) ya da açılmış halde gösterilebilir (sağ). Açılmış biçimde, her düğüm farklı bir katman gibi görünse de, aynı renkli düğümler aynı katmanın farklı zamanlardaki halidir.

Tam yinelemeli sinir ağlarında tüm nöronların çıktısı tüm nöronların girdisine bağlanır. En genel RNN mimarisi budur, çünkü diğer tüm mimariler, buradaki bazı bağların ağırlıkları sıfırlanarak elde edilebilir. RNN'ler iki farklı biçimde gösterilir: kapalı biçimde, özyineleme bağlantıları düğümlerin kendilerinin bir sonraki adımdaki durumuna olan bağlantılarıdır; açılmış biçimde, düğümlerin her zaman adımındaki durumları ayrı ayrı gösterilir.

Geçitli yineleme birimi

Geçitli yineleme birimi

Geçitli yineleme birimi (İngilizcegated recurrent unit, GRU) 2014 yılında önerilmiş bir yinelemeli ağ birimidir. Bu birimler, nöronlar arasındaki geçişi düzenleyen bir takım öğeler barındırır.[11][12] LSTM'e benzer şekilde unutma kapısı bulunur, ancak GRU yapıları genellikle daha basittir.[13] Polifonik müzik ve konuşma sinyali modelleme gibi işlerde LSTM'e benzer bir başarıyla çalışır.[14]

Kaynakça

  1. ^ Dupond, Samuel (2019). "A thorough review on the current advance of neural network structures". Annual Reviews in Control. Cilt 14. ss. 200-230. 3 Haziran 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 3 Kasım 2021. 
  2. ^ Abiodun, Oludare Isaac; Jantan, Aman; Omolara, Abiodun Esther; Dada, Kemi Victoria; Mohamed, Nachaat Abdelatif; Arshad, Humaira (1 Kasım 2018). "State-of-the-art in artificial neural network applications: A survey". Heliyon (İngilizce). 4 (11). ss. e00938. doi:10.1016/j.heliyon.2018.e00938Özgürce erişilebilir. ISSN 2405-8440. PMC 6260436 $2. PMID 30519653. 
  3. ^ Tealab, Ahmed (1 Aralık 2018). "Time series forecasting using artificial neural networks methodologies: A systematic review". Future Computing and Informatics Journal (İngilizce). 3 (2). ss. 334-340. doi:10.1016/j.fcij.2018.10.003Özgürce erişilebilir. ISSN 2314-7288. 29 Kasım 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 3 Kasım 2021. 
  4. ^ Graves, Alex; Liwicki, Marcus; Fernandez, Santiago; Bertolami, Roman; Bunke, Horst; Schmidhuber, Jürgen (2009). "A Novel Connectionist System for Improved Unconstrained Handwriting Recognition" (PDF). IEEE Transactions on Pattern Analysis and Machine Intelligence. 31 (5). ss. 855-868. CiteSeerX 10.1.1.139.4502 $2. doi:10.1109/tpami.2008.137. PMID 19299860. 2 Ocak 2014 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 3 Kasım 2021. 
  5. ^ Sak, Haşim; Senior, Andrew; Beaufays, Françoise (2014). "Long Short-Term Memory recurrent neural network architectures for large scale acoustic modeling" (PDF). 6 Eylül 2015 tarihinde kaynağından (PDF) arşivlendi. 
  6. ^ Li, Xiangang; Wu, Xihong (15 Ekim 2014). "Constructing Long Short-Term Memory based Deep Recurrent Neural Networks for Large Vocabulary Speech Recognition". arXiv:1410.4281 $2. 
  7. ^ Hyötyniemi, Heikki (1996). "Turing machines are recurrent neural networks". Proceedings of STeP '96/Publications of the Finnish Artificial Intelligence Society: 13-24. 
  8. ^ Williams, Ronald J.; Hinton, Geoffrey E.; Rumelhart, David E. (October 1986). "Learning representations by back-propagating errors". Nature. 323 (6088): 533-536. Bibcode:1986Natur.323..533R. doi:10.1038/323533a0. ISSN 1476-4687. 
  9. ^ Schmidhuber, Jürgen (1993). Habilitation thesis: System modeling and optimization (PDF). s. 150. []
  10. ^ Hochreiter, Sepp; Schmidhuber, Jürgen (1 Kasım 1997). "Long Short-Term Memory". Neural Computation. 9 (8): 1735-1780. doi:10.1162/neco.1997.9.8.1735. PMID 9377276. 
  11. ^ Heck, Joel; Salem, Fathi M. (12 Ocak 2017). "Simplified Minimal Gated Unit Variations for Recurrent Neural Networks". arXiv:1701.03452 $2. 
  12. ^ Dey, Rahul; Salem, Fathi M. (20 Ocak 2017). "Gate-Variants of Gated Recurrent Unit (GRU) Neural Networks". arXiv:1701.05923 $2. 
  13. ^ Britz, Denny (27 Ekim 2015). "Recurrent Neural Network Tutorial, Part 4 – Implementing a GRU/LSTM RNN with Python and Theano – WildML". Wildml.com. 27 Ekim 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 18 Mayıs 2016. 
  14. ^ Chung, Junyoung; Gulcehre, Caglar; Cho, KyungHyun; Bengio, Yoshua (2014). "Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling". arXiv:1412.3555 $2. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Bilişsel bilim</span> zihin ve süreçleri hakkında disiplinlerarası bilimsel çalışma

Bilişsel bilim, zihin ve zekânın işleyişini ele alan, zeki sistemlerin dinamiklerini ve yapılarını araştıran disiplinler arası bir yaklaşımdır. Çok geniş bir alanı kapsamasından ötürü bilişsel bilim alanında çalışan araştırmacıların bilişsel psikoloji, dil bilimi, sinir bilimi, yapay zekâ, antropoloji ve felsefe gibi alanlarda temel bilgilere sahip olması beklenir.

<span class="mw-page-title-main">Yapay zekâ</span> insani zekaya sahip makine ve yazılım geliştiren bilgisayar bilimleri dalı

Yapay zekâ ya da kısaca YZ,, insanlar da dahil olmak üzere hayvanlar tarafından, doğal zekânın aksine makineler tarafından görüntülenen zekâ çeşididir. İlk ve ikinci kategoriler arasındaki ayrım genellikle seçilen kısaltmayla ortaya çıkar. Güçlü yapay zeka genellikle Yapay genel zekâ olarak etiketlenirken, doğal zekayı taklit etme girişimleri yapay biyolojik zekâ olarak adlandırılır. Önde gelen yapay zeka ders kitapları, alanı zeki etmenlerin çalışması olarak tanımlar: Çevresini algılayan ve hedeflerine başarıyla ulaşma şansını en üst düzeye çıkaran eylemleri gerçekleştiren herhangi bir cihaz. Halk arasında, yapay zekâ kavramı genellikle insanların insan zihni ile ilişkilendirdiği öğrenme ve problem çözme gibi bilişsel eylemleri taklit eden makineleri tanımlamak için kullanılır.

Kısa süreli bellek, kısa bir süre için aktif, hazır bir durumda az miktarda bilgiyi işlemeden akılda tutma yetisidir. Örneğin, kısa süreli bellek, kısa bir süre önce söylenen bir telefon numarasını hatırlamak için kullanılabilir. Kısa süreli hafızanın süresinin saniyeler düzeyinde olduğuna inanılmaktadır. En çok bahsedilen kapasite, Miller'ın kendisinin figürün "bir şakadan biraz daha fazlası" olarak tasarlandığını belirtmesine rağmen, Büyülü Sayı Yedi, Artı veya Eksi İki' dir ve Cowan'ın (2001) daha gerçekçi bir figürün 4 ± 1 birim olduğuna dair kanıt sağlamıştır. Buna karşılık, uzun süreli bellek bilgileri süresiz olarak tutabilir.

Uzun süreli bellek ya da Uzun dönemli hafıza, iki depolama hafıza modeli teorisinin bir parçası olarak, öğeler arasındaki ilişkilerin depolandığı bellektir. Teoriye göre uzun süreli bellek, kısa süreli bellekten farklı işlevlere sahiptir. Bu da kısa süreli belleğin 20 ila 30 saniye içerisindeki bilgileri çağırmasından farklı olarak, depolanmış bilgileri uzun sürelerde tekrar, tekrar çağırabilmesidir. Bu iki bellek arasında bir fark görünmüyor gibi olsa da, her ikisi bilgiyi farklı yer ve alanlarda depolamaları bağlamında modelleri farklıdır.

Hipokampus, beynin medial temporal lobunda yer alan, hafıza ve yön bulmada önemli rolü olan bölge. Bir gri cevher tabakası olup, lateral ventrikülün alt boynuz tabanı boyunca uzanır. Filogenetik olarak en eski beyin kısımlarındandır.

<span class="mw-page-title-main">Makine öğrenimi</span> algoritmaların ve istatistiksel modellerin kullanımıyla bilgisayarların yapacakları işleri kendileri çözebilmeleri

Makine öğrenimi (ML), veriden öğrenebilen ve görünmeyen verilere genelleştirebilen ve dolayısıyla açık talimatlar olmadan görevleri yerine getirebilen istatistiksel algoritmaların geliştirilmesi ve incelenmesiyle ilgilenen, yapay zekâda akademik bir disiplindir. Makine öğrenimi, bilgisayarların deneyimlerinden öğrenerek karmaşık görevleri otomatikleştirmeyi sağlayan bir yapay zeka alanıdır. Bu, veri analizi yaparak örüntüler tespit etme ve tahminlerde bulunma yeteneğine dayanır. Son zamanlarda yapay sinir ağları, performans açısından önceki birçok yaklaşımı geride bırakmayı başardı.

Uyarlamalı ağ tabanlı bulanık çıkarım sistemi, Takagi-Sugeno bulanık çıkarım sistemine dayalı bir tür yapay sinir ağı yöntemi. Jang tarafından 1990’ların başlarında geliştirilmiş olup doğrusal olmayan fonksiyonların modellenmesinde ve kaotik zaman serilerinin tahmininde kullanılmıştır.

<span class="mw-page-title-main">Google DeepMind</span>

DeepMind Technologies, Alphabet Inc.'in bir yan kuruluşu olup, 2010'da kurulmuş bir İngiliz yapay zekâ program geliştirme şirketidir. DeepMind, 2014'te Google tarafından satın alınmıştır. Şirketin merkezi Londra'dadır ve Kanada, Fransa ve Amerika Birleşik Devletleri'nde araştırma merkezleri bulunmaktadır. 2015'te, Google'ın ana şirketi olan Alphabet Inc.'in tamamına sahip olduğu bir yan kuruluş oldu.

<span class="mw-page-title-main">Uzun kısa süreli bellek</span>

Uzun kısa süreli bellek derin öğrenme alanında kullanılan yapay bir yinelemeli sinir ağı (RNN) mimarisidir. Standart ileri beslemeli sinir ağlarının aksine, LSTM'nin geri bildirim bağlantıları vardır. Yalnızca anlık veriyi değil, veri dizilerini de işleyebilir. Örneğin, LSTM bölümlenmemiş, bağlı el yazısı tanıma, konuşma tanıma ve ağ trafiğinde anomali veya IDS'lerde tespiti gibi görevler için geçerlidir.

Epizodik bellek, açıkça belirtilebilen veya bir araya getirilebilen günlük olayların hafızasıdır. Belirli zamanlarda ve yerlerde meydana gelen geçmiş kişisel deneyimlerin toplanmasıdır; örneğin, kişinin 7. doğum günündeki parti gibi. Semantik bellek ile birlikte, uzun süreli hafızanın iki ana bölümünden biri olan açık belleği oluşturur(diğeri örtük bellek).

<span class="mw-page-title-main">Otokodlayıcı</span>

Otokodlayıcı, denetimsiz bir şekilde öğrenmek için kullanılan bir tür yapay sinir ağıdır. Otokodlayıcının amacı veriyi temsil eden bir timsal vektörü öğrenmektir. Tipik olarak boyutsallık azaltma için kullanılır. Genel mimarisinde bir kodlayıcı bir de deşifre edici modülleri içerir. Kodlayıcı modül veriyi özümseyen bir timsal vektörü yaratırken deşifre edici modül ise bu timsal vektörünü kullanarak tekrar yeni veri oluşturmaktadır. Otokodlayıcı yapay sinir ağlarına örnek olarak Varyasyonel Otokodlayıcı ve de Derin Üretken Modeller verilebilir. Otomatik kodlayıcılar, yüz tanımadan kelimelerin anlamsal anlamlarını elde etmeye kadar birçok uygulamalı problemin çözümünde etkili bir şekilde kullanılmaktadır.

<span class="mw-page-title-main">Sağlık hizmetlerinde yapay zekâ</span>

Sağlık hizmetlerinde yapay zekâ, karmaşık tıbbî ve sağlık hizmetleri verilerinin analizinde, insan bilişini taklit etmek için makine öğrenimi algoritmalarını, yazılımlarını veya yapay zekâyı (AI) tanımlamak için kullanılan kapsamlı bir terimdir. Özellikle, AI, bilgisayar algoritmalarının sonuçları yalnızca giriş verilerine göre yaklaşık olarak tahmin etme yeteneğidir.

Çekişmeli üretici ağ, Ian Goodfellow ve meslektaşları tarafından 2014 yılında tasarlanan bir makine öğrenimi framework sınıfıdır. Bir oyunda iki sinir ağı birbiriyle yarışmaktadır.

Veri analizinde, anomali tespiti, verilerin çoğunluğundan önemli ölçüde farklılaşarak şüphe uyandıran nadir öğelerin, olayların veya gözlemlerin tanımlanmasıdır. Tipik olarak anormal öğeler, banka dolandırıcılığı, yapısal bir kusur, tıbbi sorunlar veya bir metindeki hatalar gibi bir tür soruna dönüşecektir. Anormallikler ayrıca aykırı değerler, yenilikler, gürültü, sapmalar ve istisnalar olarak da adlandırılmaktadır.

Tekrarlı ön-hazırlama etkisi, uyaranlar tekrar tekrar sunulduğunda davranışsal bir tepkideki gelişmelere gönderme yapar. Gelişmeler, doğruluk veya tepki süresi açısından ölçülebilir ve tekrarlanan uyaranlar önceki uyaranlarla aynı veya benzer olduğunda ortaya çıkabilir. Bu gelişmelerin kümülatif olduğu gösterilmiştir, bu nedenle tekrar sayısı arttıkça yanıtlar en fazla yedi tekrara kadar sürekli olarak daha hızlı olur. Bu gelişmeler, tekrarlanan maddeler yön, boyut ve konum açısından biraz değiştirildiğinde de bulunur. Etkinin boyutu, maddenin sunulduğu sürenin uzunluğu ve tekrarlanan maddelerin ilk ve sonraki sunumları arasındaki sürenin uzunluğuyla da ayarlanır.

Nöral makine çevirisi (NMT), bir sözcük dizilim olasılığını tahmin etmek için yapay bir sinir ağı kullanan ve genellikle cümlenin tümünü tek bir entegre modelde modelleyen bir makine çevirisi yaklaşımıdır.

<span class="mw-page-title-main">Yapay zekâ güvenliği</span>

Yapay zekâ güvenliği, yapay zekâ sistemlerinden kaynaklanabilecek kazaları, kötüye kullanımı veya diğer zararlı sonuçları önlemekle ilgilenen disiplinler arası bir alandır. Yapay zekâ sistemlerini ahlaki ve faydalı hale getirmeyi amaçlayan makine etiği ile yapay zekâ uyumunu kapsar ve yapay zekâ güvenliği, riskler için sistemleri izlemek ve onları son derece güvenilir hale getirmek gibi teknik sorunları kapsar. Yapay zekâ araştırmalarının ötesinde, güvenliği teşvik eden normlar ve politikalar geliştirmeyi içerir.

<span class="mw-page-title-main">Yapay hayal gücü</span>

Yapay hayal gücü, tahminler, icatlar veya bilinçli deneyimler yaratmak için gerçek veya olası kurgu modelleri üreten, simüle eden ve kolaylatıran yapay genel zekâ'nın bir alt bileşenidir.

Ilya Sutskever, Kanadalı makine öğrenimi araştırmacısı ve bilgisayar bilimci.

Yapay sinir ağındaki bir nöronun aktivasyon fonksiyonu, nöronun girdilerinden gelen değerlerin toplamını kullanarak nöronun çıktısını hesaplamaya yardımcı olan matematiksel fonksiyondur. Aktivasyon fonksiyonu doğrusal olmadığı sürece, sadece birkaç nöron kullanılarak bile karmaşık problemler çözülebilir.