İçeriğe atla

Yaroslav Blanter

Yaroslav Blanter
2008'de Blanter
DoğumЯрослав Михайлович Блантер
19 Kasım 1967 (56 yaşında)
Moskova, SSCB
EğitimMoskova Çelik ve Alaşımları Enstitüsü
Kariyeri
DalıFizik, ekstraktif metalurji

Yaroslav Mihayloviç Blanter (RusçaЯрослав Михайлович Блантер d. 19 Kasım 1967), ekstraktif metalurji ve yoğun madde fiziği alanında uzmanlaşmış Rus fizikçidir. 2011'den beri Delft Teknoloji Üniversitesi'nde profesör olarak görev yapmaktadır.[1][2][3][4]

Hayatı ve kariyeri

19 Kasım 1967 tarihinde Moskova'da doğdu. 1984 yılında Moskova'daki II. fizik-matematik okulundan mezun oldu.[5]

1990 yılında Moskova Çelik ve Alaşımları Enstitüsü'nün fizikokimyasal bölümünden ekstraktif metalurji alanında uzmanlaşarak mezun oldu.[6]

1992 yılına kadar aynı enstitüde yüksek lisans dersleri aldı. Aynı yıl tezinin savunmasını gerçekleştirerek kandidat unvanını aldı. Tezin konusu, topolojik geçişte elektronik sistemlerin kinetik özelliklerinde kuantum etkilerinin gelişimi ile ilgiliydi.[7]

1990'dan 1994'e kadar istatistiksel fizik, normal ve süper iletken metaller teorisi, klasik ve kuantum mekaniği dersleri verdi. 1989'dan 1993'e kadar Moskova 43. Okulu'nda matematik öğretmenliği yaptı.[8]

1995 yılında Alexander von Humboldt Vakfı tarafından desteklenen Karlsruhe'de bulunan Yoğun Madde Teorisi Enstitüsü'nde bir görev aldı. 1996'dan 2000'e kadar Cenevre Üniversitesi'nde görev yaptı. 2000'den 2007'ye kadar ise Delft Teknik Üniversitesi'nde doçent olarak çalıştı. 2007 yılında bu üniversitede kıdemli doçent unvanını elde etti.[2] 2002'de Hollanda'da düzenlenen NATO İleri Araştırma Çalıştayı "Mezoskopik Fizikte Kuantum Gürültüsü" organizasyon komitesinin üç üyesinden biriydi.[9] Bu hususlara ek olarak Wikimedia projelerine de katkıda bulunmaktadır.

Öne çıkan çalışmaları

Blanter, çeşitli bilimsel dergilerde 100'den fazla eser yayımladı. H endeksi 22'dir.[10] En çok atıfta bulunulan eserler aşağıda listelenmiştir.[]

Eserleri

Kaynakça

  1. ^ Идут на поправку 4 Mart 2016 tarihinde Wayback Machine sitesinde arşivlendi.. — Esquire (Russian edition), № 51, 2010 Jan.
  2. ^ a b Üniversite'nin resmi sitesindeki özgeçmişi 20 Mart 2013 tarihinde Wayback Machine sitesinde arşivlendi.
  3. ^ "Corpus expertov". expertcorps.ru. 5 Kasım 2010 tarihinde kaynağından arşivlendi. Erişim tarihi: 17 Temmuz 2018. 
  4. ^ "Casimir - Yaroslav Blanter appointed to Antoni van Leeuwenhoek chair". casimir.researchschool.nl. 12 Aralık 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 17 Temmuz 2018. 
  5. ^ List of 2nd schools alumni of 1984
  6. ^ Moscow Institute of Steel and Alloys alumni of 1985-1994 6 Mart 2009 tarihinde Wayback Machine sitesinde arşivlendi. // Moscow, publ. «Учеба» МИСиС, 2006
  7. ^ Search results at the Russian State Library catalogue 4 Nisan 2016 tarihinde Wayback Machine sitesinde arşivlendi.; Page snapshot 24 Eylül 2015 tarihinde Wayback Machine sitesinde arşivlendi.
  8. ^ "Прежние учителя 43 Школы и Гимназии 1543". www.1543.ru. 6 Şubat 2005 tarihinde kaynağından arşivlendi. Erişim tarihi: 17 Temmuz 2018. 
  9. ^ Nazarov, Yuli V. (2012). Quantum Noise in Mesoscopic Physics. Springer Science & Business Media. ss. vii. ISBN 9789401000895. 
  10. ^ Courtesy of the ISI Web of Knowledge

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Elektron</span> Temel elektrik yüküne sahip atomaltı parçacık

Elektron, eksi bir temel elektrik yüküne sahip bir atomaltı parçacıktır. Lepton parçacık ailesinin ilk nesline aittir ve bileşenleri ya da bilinen bir alt yapıları olmadığından genellikle temel parçacıklar olarak düşünülürler. Kütleleri, protonların yaklaşık olarak 1/1836'sı kadardır. Kuantum mekaniği özellikleri arasında, indirgenmiş Planck sabiti (ħ) biriminde ifade edilen, yarım tam sayı değerinde içsel bir açısal momentum (spin) vardır. Fermiyon olmasından ötürü, Pauli dışarlama ilkesi gereğince iki elektron aynı kuantum durumunda bulunamaz. Temel parçacıkların tamamı gibi hem parçacık hem dalga özelliklerini gösterir ve bu sayede diğer parçacıklarla çarpışabilir ya da kırınabilirler.

Yukarı kuark en hafif kuarktır, temel bir parçacıktır ve maddenin önemli bir bileşenidir. Aşağı kuarkla birlikte atom çekirdeğini meydana getiren proton ve nötronu oluşturur. Birinci nesil olarak sınıflandırılırlar. Elektrik yükü +2/3 e olup çıplak kütleleri 2,2+0,5
-0,4
 MeV/c2
olarak ölçülmüştür. Bütün kuarklar gibi yukarı kuark da 1/2 spine sahip temel fermiyondur ve dört temel etkileşimin hepsinden etkilenir. Yukarı kuarkın antiparçacığı olan yukarı antikuark ile elektriksel yük işareti gibi birkaç özellikte farklılaşır.

<span class="mw-page-title-main">Wolfgang Ketterle</span>

Wolfgang Ketterle, Alman fizikçi. 2001 yılında Eric Allin Cornell ve Carl Wieman ile beraber Nobel Fizik Ödülü'nü kazanmıştır.

Kuark modeli 1964'te Murray Gell-Mann ve George Zweig tarafından birbirlerinden bağımsız olarak ortaya atılmıştır. Kuarklar hodronlar için oluşturulan bir düzenlenim şemasının parçaları olarak tanıtıldı ve 1968 yılına kadar onların varlığı ile ilgili çok az fiziksel kanıt bulunuyordu. Altı kuarkın tamamı hızlandırıcı deneylerinde gözlemlendi, keşfedilen son kuark olan üst kuark ilk kez 1995'te Fermilab'da gözlendi.

<span class="mw-page-title-main">Walter Kohn</span> Amerikalı fizikçi (1923 – 2016)

Walter Kohn, John A. Pople ile birlikte 1998 Nobel Kimya Ödülü sahibi Yahudi kökenli Amerikalı fizikçi. Walter Kohn ve John Pople bu ödülü kuantum kimyası üzerine bir birlerinden bağımsız olarak yaptıkları çalışmalar üzerine almaya hak kazanmışlardır. Kohn özelde bu ödülü Atomlar arasındaki kimyasal bağları açıklamak üzere karmaşık matematiği kuantum mekaniğine uygulayarak geliştirdiği yoğunluk fonksiyonları teorisi sayesinde kazanmıştır.

<span class="mw-page-title-main">Barabási-Albert modeli</span>

Albert-László Barabási ve Réka Albert tarafından geliştirilen BA modeli büyüme prensibi ve tercihi bağ kurma mantığı ile bağlantı sayısı dağılımını daha gerçekçi bir şekilde modeller. Erdos Renyi yaklaşımından farklı olarak grafiğin oluşumu tüm noktaların var olduğu bir durumdan başlamaz, noktalar teker teker eklenir. Her yeni nokta m sayıda bağlantı kurar ve bağlantı kuracağı noktayı seçme olasılığı şu formül ile ifade edilir:

Dolanıklık, kuantum mekaniğine özgü bir olgudur. Kuantum fiziğine göre iki benzer parçacık birbiriyle eşzamanlılığa sahiptir. Bu parçacıklar ayrı yerlerde birbirinden eşzamanlı olarak etkilenirler. İki elektron parçası ışık yılına yakın uzaklıkta olsa dahi birbirlerini etkileyebilirler. Bu sayede birbirinden ışık yılına yakın bir uzaklıkta olan bir elektron kendi çevresi etrafında sağa dönerken diğer bir elektron parçası sola dönecektir.

Preonlar parçacık fiziğinde, kuarklar ve leptonların altparçacıkları olan nokta parçacıklardır. Terim 1974’te, Jogesh Pati ve Muhammed Abdüsselam tarafından oluşturulmuştur. Preon modellerine olan ilgi, 1980’lerde zirve noktasına ulaşmıştır ancak parçacık fiziği Standart Model'i, fiziğin kendisini en başarılı şekilde tanımlamaya devam ettiğinden ve lepton ile kuark kompozitleri hakkında hiçbir deneysel veri bulunmadığından dolayı bu ilgi azalmıştır.

<span class="mw-page-title-main">Elliott H. Lieb</span>

Elliott Hershel Lieb Amerikalı fizikçi ve Princeton Üniversitesi'nde matematik ve fizik profesörüdür. Matematiksel fiziğe özellikle istatistiksel mekanik ve çoklu parçacık kuramına katkıları olmuştur.

Tetrakuark, parçacık fiziğinde, dört valans kuarktan oluşan ve varlığı tahmin edilmesine karşın henüz kanıtlanamamış egzotik mezondur. Prensipte, bir tetrakuark durumu kuantum renk dinamiği içinde yer alabilmektedir.

<span class="mw-page-title-main">Egzotik hadron</span>

Egzotik hadron, kuarklar ile gluonlardan meydana gelen, sıradan hadronların aksine iki ya da üç kuarktan fazlasını içeren atomaltı parçacıktır. Egzotik baryonlar, üç kuarka sahip sıradan baryonlardan; egzotik mezonlar ise birer kuark ve antikuarka sahip sıradan mezonlardan ayrılır. Teoride, renk yükü beyaz olduğu müddetçe bir hadronun kuark sayısında herhangi bir limit yoktur.

Parton, Richard Feynman tarafından ortaya atılan bir hadron modelidir. Stanford Doğrusal Hızlandırıcı Merkezi'nde (SLAC) 1968 yılında yapılan derin inelastik saçılma deneyleri, protonun daha küçük, nokta benzeri parçacıklardan oluştuğunu ve böylece bir temel parçacık olmadığını gösterdi. O dönemde fizikçiler bu nesneleri kuarklar ile ilişkilendirmek konusunda tereddütlü olduklarından parçacıklar, Feynman tarafından türetilen "parton" olarak adlandırdı. Bu deneyler sırasında gözlemlenen cisimler, diğer çeşnilerin de keşfedilmesiyle daha sonra yukarı ve aşağı kuark olarak tanımlanacaktı. Buna rağmen parton, hadronların bileşenlerini tanımlayan ortak bir terim olarak kullanımda kaldı.

<span class="mw-page-title-main">J/psi mezonu</span>

J/psi mezonu veya psion bir atomaltı parçacık. Bir tane tılsım kuark ve bir de tılsım antikuarktan oluşan bir çeşni değiştiren yüksüz mezonudur. Bir tılsım kuark ve bir tılsım antikuarkın bağlı hali ile oluşan mezonlar "karmoniyum" olarak anılır. En yaygın karmoniyum, düşük değişim kütlesi, 3.0969 GeV/c23,0969 GeV/c2 yani ηc̅ ' nin (2.9836 GeV/c22,9836 GeV/c2) biraz üzerinde, sebebi ile J/psi mezondur. Bu mezon ortalama 7.2×10−21 s7,2×10-21 s ömre sahiptir.Fakat bu süre tahmin edilen 1000 kat daha uzundur.

Çeşni değiştiren nötr akım ya da çeşni değiştiren yüksüz akım, elektrik yükü değişmeksizin fermiyon akımının çeşnisini değişimi anlamına gelen hipotetik ifade. Eğer doğada olursalar, bu işlemleri henüz deneyde gözlenmemiş olguları tetikleyebilir. Çeşni değiştiren yüksüz akımlar Standard Modelde üç seviyenin ötesinde var olabilir fakat GIM mekanizması tarafından bir hayli baskılanır. Birkaç birlik FCNCs için araştırmalar yaptı. 2005' te Tevatron CDF deneyinde tuhaf B-mezonunun phi mezonlarına FCNC bozulması ilk kez gözlendi.

Hadronlaşma veya hadronizasyon, hadronların kuarklar ve gluonların dışında oluşma işlemidir. Bu olay, kuarklar ve gluanların oluştuğu bir parçacık çarpıştırıcıda yüksek enerjili bir çarpışma ile olur. Renk hapsi nedeni ile kuarklar ve hadronlar kendi başlarına var olamazlar. Standart Model'e göre, bunlar vakumdan spontane şekilde oluşmuş kuarklar ve antikuarklar ile birleşerek hadronları oluştururlar. Hadronlaşmanın kuantum renk dinamikleri henüz tam olarak anlaşılamamıştır ama birkaç olgu çalışmasında modellenip parametrize edilmiştir. Bu çalışmalardan biri Lund ip modelidir. Aynı zamanda uzun menzil kuantum renk dinamiği yaklaşım şemaları da mevcuttur.

Parçacık fiziğinde asimptotik özgürlük, enerji ölçeği yükseldikçe ve ilgili uzunluk ölçeği azaldıkça iki parçacık arası bağın asimptotik olarak zayıf olmasına sebebiyet veren ayar teorilerinin özelliklerinden biridir.

Ksi baryonları, birinci çeşni nesillerinden bir kuarka, daha yüksek çeşnili nesillerinden ise iki kuarka sahip, Ξ sembolüyle gösterilen hadron parçacığı ailesidir. Bu nedenlerden ötürü bu tip parçacıklar birer baryondur, toplam izospinleri 1/2'dir ve nötr olabildikleri gibi +2, +1 ya da -1 temel yüke sahip olabilirler. Yüklü Ksi baryonları ilk kez 1952'de, Manchester grubu tarafından gerçekleştirilen kozmik ışın deneyleri sırasında gözlemlenmiştir. Nötr Ksi baryonlarının ilk kez gözlemlenmesi ise 1959'da, Lawrence Berkeley Ulusal Laboratuvarı'nda gerçekleştirildi. Kararsız durumları, bozunma zinciri sonucunda daha hafif parçacıklara bozunmaları sebebiyle geçmişte çağlayan parçacıklar olarak da anılmaktaydılar.

Kuantum elektrodinamiğinde bir parçacığın anormal manyetik momenti, döngülerle beraber Feynman diyagramları ile ifade edilen kuantum mekaniğinin, o parçanın manyetik momentine etkilerinin bir katkısıdır.

<span class="mw-page-title-main">CP2K</span>

CP2K, katı hal, sıvı, moleküler ve biyolojik sistemlerin atomistik simülasyonlarını gerçekleştirmek için Fortran 2003'te yazılan serbestçe kullanılabilen (GPL) bir programdır.

Metalik hidrojen, hidrojenin iletken gibi davrandığı bir fazdır. Bu faz 1935 yılında Eugene Wigner ve Hillard Bell Huntington tarafından teorik olarak öngörülmüştür.