İçeriğe atla

Yapay hayal gücü

Yapay hayal gücü, tahminler, icatlar[1] veya bilinçli deneyimler yaratmak için gerçek veya olası kurgu modelleri üreten, simüle eden ve kolaylatıran[2] yapay genel zekâ'nın bir alt bileşenidir.

Yapay hayal gücü terimi, makinelerin veya programların bir özelliğini tanımlamak için de kullanılmaktadır. Araştırmacıların simüle etmeyi umdukları özelliklerden bazıları yaratıcılık, vizyon, dijital sanat, mizah ve hicivdir.[3]

Bu alandaki uygulayıcılar Yapay(görsel) hayal gücü,[4] Yapay(işitsel) Hayal Gücü,[5] insan duygularına dayalı içerik modelleme/filtreleme ve İnteraktif Arama gibi Yapay hayal gücünün çeşitli yönlerini araştırmaktadır. Konuyla ilgili bazı makaleler, yapay hayal gücünün "insanların gerçek dünyadan kaçabilecekleri kadar rahat olabilecekleri" yapay bir dünya yaratmak için nasıl gelişebileceğine dair spekülasyonlar yapmaktadır.[6]

G. Schleis ve M. Rizki gibi bazı araştırmacılar, yapay hayal gücünü oluşturmak için yapay sinir ağlarını kullanmaya odaklanmaktadır.[7]

Bir başka önemli proje de Japonya'daki Tokyo Üniversitesi'nde Hiroharu Kato ve Tatsuya Harada tarafından yürütülmektedir. Bir nesnenin tanımını, hayal gücünün ne olduğunu tanımlamanın en kolay yolu olabilecek bir görüntüye çevirebilen bir bilgisayar geliştirmişlerdir. Fikirleri, bir görüntünün belirli bir kısmına karşılık gelen kısa sekanslara bölünmüş bir dizi piksel olarak görüntü kavramına dayanmaktadır. Bilim insanları bu dizileri "görsel kelimeler" olarak adlandırıyor ve bunlar makine tarafından istatistiksel dağılım kullanılarak makinenin karşılaşmadığı bir nesnenin görüntüsünü oluşturmak için yorumlanabilir.

Yapay hayal gücü konusu, Sembolik Yakınsama Teorisi 'ni ortaya atan ve bilgisayar sistemlerinde yapay hayal gücü geliştirmek için bir proje üzerinde çalışan ünlü iletişim uzmanı Ernest Bormann gibi bilgisayar bilimleri alanı dışındaki akademisyenlerin de ilgisini çekmiştir.[8] Sanatçı Grégory Chatonsky tarafından yapay hayal gücü ve post-dijital sanat üzerine düzenlenen disiplinlerarası araştırma semineri 2017 yılından bu yana Paris'teki Ecole Normale Supérieure 'de gerçekleştirilmektedir.[9]

Nasıl Zihin Oluşturulur: Hayal Gücüne Sahip Makinelere Doğru, Igor Aleksander'ın konuyla ilgili akademik bir kitabıdır; Yapay Hayal Gücü,[10][11] bir Anahtarlı romandır, Kalpanik S. adlı bir Yapay hayal gücü sistemi tarafından yazıldığı ve "Center of Artificial Imagination, Inc." tarafından yayınlandığı iddia edilen akademik olmayan bir kitap, bu terimin bilinen ilk kullanımıdır.

Etkileşimli aramada kullanımı

Yapay hayal gücünün tipik uygulaması, etkileşimli bir aramadır. Etkileşimli arama, 1990'ların ortalarından bu yana World Wide Web'in gelişimi ve arama motorlarının optimizasyonu ile birlikte geliştirilmiştir. Bir kullanıcının ilk sorgusuna ve geri bildirimine dayanarak, aranacak veritabanları arama sonuçlarını iyileştirmek için yeniden düzenlenir.

Yapay hayal gücü, görüntüleri sentezlememize ve gerçek dünyada var olup olmadığına bakılmaksızın veri tabanında olup olmadığına bakılmaksızın yeni bir görüntü geliştirmemize olanak tanımaktadır. Örneğin, bir bilgisayar ilk sorgunun cevabına dayanan sonuçlar göstermektedir. Kullanıcı birkaç ilgili görüntü seçer ve ardından teknoloji bu seçimleri analiz eder ve görüntülerin sıralamasını sorguya uyacak şekilde yeniden düzenler. Bu süreçte, seçilen görüntüleri sentezlemek ve arama sonucunu ek ilgili sentezlenmiş görüntülerle iyileştirmek için yapay hayal gücü kullanılmaktadır. Bu teknik, Rocchio algoritması ve evrimsel algoritma dahil olmak üzere çeşitli algoritmalara dayanmaktadır. Bir sorgu noktasını ilgili örneklerin yakınına ve ilgisiz örneklerden uzağa konumlandıran Rocchio algoritması [12] basittir ve veritabanlarının belirli sıralarda düzenlendiği küçük bir sistemde iyi çalışmaktadır. Evrimsel sentez iki adımdan oluşur: standart bir algoritma ve standart algoritmanın geliştirilmesi şeklindedir.[13][14] Kullanıcıdan gelen geri bildirimler sayesinde, kullanıcının aradığı şeye uygun olacak şekilde sentezlenen ek görüntüler olacaktır.

Genel yapay hayal gücü

Yapay hayal gücünün daha genel bir tanımı ve geniş uygulamaları bulunmaktadır. Yapay hayal gücünün geleneksel alanları arasında görsel hayal gücü ve işitsel hayal gücü yer almaktadır. Daha genel olarak, fikir, imge ve kavram oluşturmaya yönelik tüm eylemler hayal gücü ile ilişkilendirilebilir. Dolayısıyla, yapay hayal gücü sadece grafik üretmekten daha fazlasını ifade etmektedir. Örneğin, yapay hayal gücünün sınıflandırılması zor olsa da ahlaki hayal gücü, yapay hayal gücünün önemli bir araştırma alt alanı olarak karşımıza çıkmaktadır.

Ahlak, insan mantığının önemli bir parçasıyken yapay ahlak, yapay hayal gücü ve yapay zeka için önemlidir. Yapay zekaya yönelik yaygın bir eleştiri, insanların makinelerin hataları veya kararları için sorumluluk alıp almaması ve nasıl iyi huylu makineler geliştirileceğidir. Hiç kimse en iyi ahlaki kuralların net bir tanımını yapamadığı için, genel kabul görmüş ahlaki kurallara sahip makineler yaratmak imkansızdır. Bununla beraber, yapay ahlak üzerine yapılan son araştırmalar ahlak tanımının etrafından dolanmaktadır. Bunun yerine, makineleri insan ahlâkını taklit edecek şekilde eğitmek için makine öğrenimi yöntemleri kullanılmaktadır. Binlerce farklı insanın ahlaki kararlarına ilişkin veriler göz önünde bulundurulduğunda, eğitilen ahlaki model yaygın olarak kabul edilen kuralları yansıtabilir.

Hafıza, yapay hayal gücünün bir diğer önemli alanıdır. Aude Oliva gibi araştırmacılar yapay hafıza, özellikle de görsel hafıza üzerine kapsamlı çalışmalar gerçekleştirmiştir.[15] Görsel hayal gücü ile karşılaştırıldığında, görsel hafıza daha çok makinenin resimleri insani bir şekilde nasıl anladığı, analiz ettiği ve depoladığı üzerine odaklanır. Buna ek olarak, uzamsal özellikler gibi karakterler de dikkate alınmaktadır. Bu alan beynin biyolojik yapısına dayandığından, sinirbilim üzerine de kapsamlı araştırmalar yapılmıştır, bu da onu biyoloji ve bilgisayar bilimi arasında büyük bir kesişim noktası haline getirmektedir

Ayrıca bakınız

Kaynakça

  1. ^ A bot will complete this citation soon. Click here to jump the queue arXiv:[1].
  2. ^ A bot will complete this citation soon. Click here to jump the queue arXiv:[2].
  3. ^ "How Generative AI Can Augment Human Creativity". Harvard Business Review. 16 Haziran 2023. ISSN 0017-8012. 20 Haziran 2023 tarihinde kaynağından arşivlendi. Erişim tarihi: 20 Haziran 2023. 
  4. ^ Thomee, B.; Huiskes, M.J.; Bakker, E.; Lew, M.S. (July 2007). "Visual information retrieval using synthesized imagery". Proceedings of the 6th ACM international conference on Image and video retrieval. ACM. ss. 127-130. doi:10.1145/1282280.1282303. ISBN 9781595937339. Erişim tarihi: 19 Aralık 2023. 
  5. ^ AUDIO CONTENT TRANSMISSION by Xavier Amatriain & Perfecto Herrera, "Publications" (PDF). 6 Ocak 2007 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 22 Aralık 2007. 
  6. ^ Hypertext and “the Hyperreal” by Stuart Moulthrop, Yale University http://portal.acm.org/citation.cfm?doid=74224.74246
  7. ^ Learning from a random player using the reference neuron model in the Proceedings of the 2002 Congress on Evolutionary Computation, 2002. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1007019
  8. ^ Twentieth-Century Roots of Rhetorical Studies, by Jim A. Kuypers and Andrew King, 2001. published by Praeger/Greenwood, page 225.
  9. ^ Postdigital Artificial Imaginationhttp://postdigital.ens.fr 7 Mayıs 2020 tarihinde Wayback Machine sitesinde arşivlendi.
  10. ^ Artificial Imagination https://www.amazon.com/Artificial-Imagination-Kalpanik-S/dp/0981476244 21 Aralık 2021 tarihinde Wayback Machine sitesinde arşivlendi.
  11. ^ Artificial Imagination https://www.amazon.com/Artificial-Imagination-Special-Photostory-Washington/dp/098147621X 21 Aralık 2021 tarihinde Wayback Machine sitesinde arşivlendi.
  12. ^ Dalton, Gerard, Buckley, Chris (1 Haziran 1990). "Improving retrieval performance by relevance feedback". Journal of the American Society for Information Science. 41 (4): 288-297. doi:10.1002/(SICI)1097-4571(199006)41:4<288::AID-ASI8>3.0.CO;2-H. 
  13. ^ "Using an artificial imagination for texture retrieval". 2008 19th International Conference on Pattern Recognition. December 2008. 
  14. ^ An Artificial Imagination for Interactive Search (PDF). Springer Berlin Heidelberg. 2007. ss. 19-28. 4 Ekim 2023 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 10 Mart 2024. 
  15. ^ Oliva, Aude (2008). "Visual long-term memory has a massive storage capacity for object details". Proceedings of the National Academy of Sciences. 105 (38): 14325-14329. doi:10.1073/pnas.0803390105. PMC 2533687 $2. PMID 18787113. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Bilişsel bilim</span> zihin ve süreçleri hakkında disiplinlerarası bilimsel çalışma

Bilişsel bilim, zihin ve zekânın işleyişini ele alan, zeki sistemlerin dinamiklerini ve yapılarını araştıran disiplinler arası bir yaklaşımdır. Çok geniş bir alanı kapsamasından ötürü bilişsel bilim alanında çalışan araştırmacıların bilişsel psikoloji, dil bilimi, sinir bilimi, yapay zekâ, antropoloji ve felsefe gibi alanlarda temel bilgilere sahip olması beklenir.

<span class="mw-page-title-main">Bilgisayar bilimi</span> belirli evren kurallarına dayalı, sistematik çalışan ve elementlerin ya da ağların birbirleriyle olan ilişkisi

Bilgisayar bilimi, bilgisayarların tasarımı ve kullanımı için temel oluşturan teori, deney ve mühendislik çalışmasıdır. Hesaplamaya ve uygulamalarına bilimsel ve pratik bir yaklaşımdır. Bilgisayar bilimi; edinim, temsil, işleme, depolama, iletişim ve erişimin altında yatan yönteme dayalı prosedürlerin veya algoritmaların fizibilitesi, yapısı, ifadesi ve mekanizasyonunun sistematik çalışmasıdır. Bilgisayar biliminin alternatif, daha özlü tanımı "büyük, orta veya küçük ölçekli algoritmik işlemleri otomatikleştirme çalışması" olarak nitelendirilebilir. Bir bilgisayar bilimcisi, hesaplama teorisi ve hesaplama sistemlerinin tasarımı konusunda uzmanlaşmıştır.

<span class="mw-page-title-main">Yapay zekâ</span> insani zekaya sahip makine ve yazılım geliştiren bilgisayar bilimleri dalı

Yapay zekâ ya da kısaca YZ,, insanlar da dahil olmak üzere hayvanlar tarafından, doğal zekânın aksine makineler tarafından görüntülenen zekâ çeşididir. İlk ve ikinci kategoriler arasındaki ayrım genellikle seçilen kısaltmayla ortaya çıkar. Güçlü yapay zeka genellikle Yapay genel zekâ olarak etiketlenirken, doğal zekayı taklit etme girişimleri yapay biyolojik zekâ olarak adlandırılır. Önde gelen yapay zeka ders kitapları, alanı zeki etmenlerin çalışması olarak tanımlar: Çevresini algılayan ve hedeflerine başarıyla ulaşma şansını en üst düzeye çıkaran eylemleri gerçekleştiren herhangi bir cihaz. Halk arasında, yapay zekâ kavramı genellikle insanların insan zihni ile ilişkilendirdiği öğrenme ve problem çözme gibi bilişsel eylemleri taklit eden makineleri tanımlamak için kullanılır.

<span class="mw-page-title-main">Yapay sinir ağları</span>

Yapay sinir ağları (YSA), insan beyninin bilgi işleme tekniğinden esinlenerek geliştirilmiş bir bilgi işlem teknolojisidir. YSA ile basit biyolojik sinir sisteminin çalışma şekli taklit edilir. Yani biyolojik nöron hücrelerinin ve bu hücrelerin birbirleri ile arasında kurduğu sinaptik bağın dijital olarak modellenmesidir. Nöronlar çeşitli şekillerde birbirlerine bağlanarak ağlar oluştururlar. Bu ağlar öğrenme, hafızaya alma ve veriler arasındaki ilişkiyi ortaya çıkarma kapasitesine sahiptirler. Diğer bir ifadeyle, YSA'lar, normalde bir insanın düşünme ve gözlemlemeye yönelik doğal yeteneklerini gerektiren problemlere çözüm üretmektedir. Bir insanın, düşünme ve gözlemleme yeteneklerini gerektiren problemlere yönelik çözümler üretebilmesinin temel sebebi ise insan beyninin ve dolayısıyla insanın sahip olduğu yaşayarak veya deneyerek öğrenme yeteneğidir.

<span class="mw-page-title-main">Makine öğrenimi</span> algoritmaların ve istatistiksel modellerin kullanımıyla bilgisayarların yapacakları işleri kendileri çözebilmeleri

Makine öğrenimi (ML), veriden öğrenebilen ve görünmeyen verilere genelleştirebilen ve dolayısıyla açık talimatlar olmadan görevleri yerine getirebilen istatistiksel algoritmaların geliştirilmesi ve incelenmesiyle ilgilenen, yapay zekâda akademik bir disiplindir. Makine öğrenimi, bilgisayarların deneyimlerinden öğrenerek karmaşık görevleri otomatikleştirmeyi sağlayan bir yapay zeka alanıdır. Bu, veri analizi yaparak örüntüler tespit etme ve tahminlerde bulunma yeteneğine dayanır. Son zamanlarda yapay sinir ağları, performans açısından önceki birçok yaklaşımı geride bırakmayı başardı.

<span class="mw-page-title-main">Marvin Minsky</span>

Marvin Lee Minsky, yapay zekâ alanında yaptığı çalışmalarla bilinen Amerikalı bilim insanıdır. 1927'de ABD'nin New York kentinde dünyaya gelen Marvin Minsky, Massachusetts'teki Phillips Academy'deki eğitiminin ardından 2. Dünya Savaşı'nın sürdüğü yıllarda ABD Donanması'na yazıldı ve 1944-1945 yılları arasında burada hizmet verdi. Marvin Minsky, 1968 yılında kurucusu olduğu MIT'nin yapay zekâ laboratuvarında çalışmalar yaptı.

<span class="mw-page-title-main">Yapay genel zekâ</span>

Yapay genel zeka (YGZ), bir insanın yapabileceği herhangi bir zihinsel görevi başarıyla gerçekleştirebilecek bir makinenin zekasıdır. Günümüzdeki bazı yapay zeka araştırmalarının temel amacıdır ve bilimkurgu ve fütüroloji'de de ortak bir konudur. Bazı araştırmacılar Yapay genel zekâyı "güçlü yapay zekâ", "tam yapay zekâ" veya bir makinenin "genel akıllı eylem" gerçekleştirme kabiliyeti olarak adlandırmaktadır; diğerleri ise sadece bilinci deneyimleyen makineler için "güçlü yapay zekâ" tabirini kullanmaktadır.

<span class="mw-page-title-main">Geoffrey Hinton</span> İngiliz-Kanadalı bilgisayar uzmanı ve psikolog

Geoffrey Everest Hinton, İngiliz-Kanadalı bilişsel ruhbilimci ve bilgisayar bilimcisi. Yapay sinir ağları konusundaki çalışmalarıyla tanınan Hinton 2013'te Google Brain projesine katılmıştır. 2018 Turing Ödülü'nü Yoshua Bengio ve Yann LeCun'la birlikte almaya hak kazanmıştır.

<span class="mw-page-title-main">Çince odası</span> Bilgisayarın anlama kabiliyetini gösteremeyeceğini sorgulayan bir düşünce deneyi

Çince Odası Argümanı, dijital bir bilgisayarın –ne kadar zeki ya da insansı davranışlar sergilerse sergilesin– bir “zihne”, “anlayışa” ya da “bilince” sahip olamayacağını savunur. Filozof John Searle tarafından “Minds, Brains, and Programs” adlı makalesinde öne sürülen bu argüman ilk kez 1980 yılında Behavioral and Brain Sciences dergisinde yayınlanmıştır. Çince Odası olarak bilinen düşünce deneyinin merkezini oluşturduğu argüman, yayınlandığı günden itibaren oldukça tartışılmıştır.

<span class="mw-page-title-main">Sağlık hizmetlerinde yapay zekâ</span>

Sağlık hizmetlerinde yapay zekâ, karmaşık tıbbî ve sağlık hizmetleri verilerinin analizinde, insan bilişini taklit etmek için makine öğrenimi algoritmalarını, yazılımlarını veya yapay zekâyı (AI) tanımlamak için kullanılan kapsamlı bir terimdir. Özellikle, AI, bilgisayar algoritmalarının sonuçları yalnızca giriş verilerine göre yaklaşık olarak tahmin etme yeteneğidir.

Yapay zeka araştırmalarında sorunların, mantığın ve araştırmanın ileri düzey "sembolik" temsillerine dayanan tüm yöntemlerin toplanması için kullanılan terimdir. Sembolik YZ, 1950'lerin ortalarından 1980'lerin sonuna kadar YZ araştırmalarının baskın paradigmasıydı. 23 Mayıs 2021 tarihinde Wayback Machine sitesinde arşivlendi. 23 Mayıs 2021 tarihinde Wayback Machine sitesinde arşivlendi.

<span class="mw-page-title-main">Bilgisayarlı görü</span> görsellerden veri bilgisi çıkartmak

Bilgisayarlı görü, bilgisayarların dijital görüntülerden veya videolardan nasıl bir anlam kazanabileceğiyle ilgilenen disiplinler arası bilimsel bir alandır. Mühendislik yöntemleriyle, insan görsel sisteminin yapabileceği görevleri anlamaya ve otomatikleştirmeye çalışmaktadır.

<span class="mw-page-title-main">Yapay zeka etkisi</span>

Yapay zeka etkisi ; izleyiciler bir yapay zeka programının davranışını gerçek zeka olmadığını savunmaya çalıştığında ortaya çıkmaktadır.

<span class="mw-page-title-main">Yapay zeka felsefesi</span> Overview of the philosophy of artificial intelligence

Yapay zeka felsefesi, yapay zekayı ve yapay zekanın, etik, bilinç, epistemoloji ve özgür irade bilgi ve anlayışı üzerindeki etkilerini araştıran teknoloji felsefesinin bir dalıdır. Ayrıca teknoloji, yapay hayvanların veya yapay insanların yaratılmasıyla ilgilidir, bu nedenle disiplin, filozoflar için oldukça ilgi çekicidir. Bu faktörler yapay zeka felsefesinin ortaya çıkmasına katkıda bulunmuştur. Bazı akademisyenler, AI topluluğunun felsefeyi reddetmesinin zararlı olduğunu savunur.

<span class="mw-page-title-main">Yapay zekâ mühendisliği</span>

Yapay zekâ mühendisliği, makinelerin insan beyni gibi düşünmesine yönelik programlama yapan bir mühendislik dalıdır. Yapay zekâ mühendisleri temelde makinelere insan gibi düşünebilme, karar verebilme, duyguları ayrıştırabilme ve olayları mantıklı kararlara bağlayabilme gibi yetenekler kazandırmayı hedefler. Bu hedefler doğrultusunda makine öğrenme algoritmaları ve modelleri geliştirmektedirler.

Michael Kearns, Amerikalı bilgisayar bilimcisi, profesör ve Pensilvanya Üniversitesinde Ulusal Merkez Başkanı, üniversitenin Ağ ve Sosyal Sistemler Mühendisliği Programı'nın (NETS) kurucu direktörü, Warren Ağ ve Veri Bilimleri Merkezi'nin kurucu direktörüdür. Ayrıca üniversitenin Wharton Okulu'nda ve Ekonomi bölümünde ikincil görevleri mevcuttur. Hesaplamalı öğrenme teorisi ve algoritmik oyun teorisinde önde gelen bir araştırmacıdır. Makine öğrenimi, yapay zekâ, hesaplamalı finans, algoritmik ticaret, hesaplamalı sosyal bilimler ve sosyal ağlar ile ilgilenmektedir. Daha önce Morgan Stanley'nin Yapay Zeka Mükemmeliyet Merkezi ekibinde Danışmanlık ve Araştırma işlevini yönetmiştir. Şu anda Amazon Web Services bünyesinde bir Amazon Uzmanıdır.

Semantic Scholar, Allen Yapay Zeka Enstitüsü'nde geliştirilen ve Kasım 2015'te halka açık olarak yayınlanan bilimsel literatür için yapay zekâ destekli bir araştırma aracıdır. Bilimsel makaleler için özetler sağlamak üzere doğal dil işlemedeki gelişmeleri kullanır. Semantic Scholar ekibi, yapay zekanın doğal dil işleme, makine öğrenimi, İnsan-bilgisayar etkileşimi ve bilgi çekme alanlarında kullanımını aktif olarak araştırmaktadır.

<span class="mw-page-title-main">Yapay zekânın kontrolü devralması</span>

Yapay zekanın kontrolü devralması, bilgisayar programlarının veya robotların gezegenin kontrolünü etkili bir şekilde insan türünün elinden alması sonucunda yapay zekanın (AI) Dünya'nın baskın zeka biçimi haline geldiği varsayımsal bir senaryodur. Olası senaryolar arasında tüm insan iş gücünün değiştirilerek tam otomasyon sağlanması, süper akıllı bir yapay zekanın kontrolü devralması ve popüler bir robot isyanı fikri yer almaktadır. Yapay zekanın ele geçirilmesiyle ilgili bilimkurgu hikâyeleri popülerliğini korumaktadır, aynı zamanda son gelişmeler de bu tehdidi daha gerçekçi hale getirmiştir. Stephen Hawking ve Elon Musk gibi bazı ünlü kişiler, gelecekte süper zeki cihazların insan denetimi altında kalmalarını temin etmek için tedbir araştırmaları yürütülmesini savunmaktadır.

<span class="mw-page-title-main">Yapay genel zekâdan kaynaklanan varoluşsal risk</span>

Yapay genel zekadan kaynaklanan varoluşsal risk, yapay genel zekadaki önemli ilerlemenin insan neslinin tükenmesine veya geri dönüşü olmayan küresel felakete yol açabileceği fikridir.

Görüntü alma sistemi, geniş bir dijital görüntü veritabanından görüntülere göz atmak, aramak ve almak için kullanılan bir bilgisayar sistemidir. Görüntü almanın en geleneksel ve yaygın yöntemleri, görüntülere resim yazısı, anahtar sözcükler, başlık veya açıklamalar gibi meta veriler eklemeye yönelik bazı yöntemleri kullanır, böylece erişim açıklama sözcükleri üzerinden gerçekleştirilebilir. Görüntüye manuel açıklama eklemek zaman alıcı, zahmetli ve pahalıdır; Bu sorunu çözmek için otomatik görüntü açıklaması üzerine çok sayıda araştırma yapılmıştır. Ek olarak, sosyal web uygulamalarının ve anlamsal webin artması, birçok web tabanlı görsel açıklama aracının geliştirilmesine ilham kaynağı olmuştur.