İçeriğe atla

Yıldız kaynaklı kara delik

Sarmal gökada NGC 300'deki yıldız kütleli bir kara deliğin (solda) sanatsal tasviri; bir Wolf-Rayet yıldızıyla ilişkilendirilmiş.

Yıldız kaynaklı kara delik (veya yıldız kütleli kara delik), bir yıldızın kütleçekimsel çöküşüyle oluşan bir kara deliktir.[1] Kütleleri yaklaşık 5 ila birkaç on güneş kütlesi arasında değişir. Bunlar süpernova patlamalarının kalıntılarıdır ve bir tür gama ışını patlaması olarak gözlemlenebilirler. Bu kara deliklere ayrıca çökmüş yıldız (collapsar) olarak da atıfta bulunulur.

2019 yılına kadar bilinen en büyük yıldız kütleli kara delik olan LB-1 B (veya LB-1 *), yaklaşık 70 ± 1,45 M kütleye sahiptir.[2]

Özellikleri

No Hair Teoremine göre kara delikler yalnızca 3 temel bileşenden oluşmaktadır. Kütle, elektriksel yük ve açısal momentum bu 3 temel bileşendir. Ayrıca kara deliklerin doğasında dönme olduğuna inanılır fakat bunu kanıtlayacak kesin bir gözlem henüz gözlemlenmemiştir. Yıldız kütleli kara deliklerin dönmesi, açısal momentumum korunumundan dolayı gerçekleşmektedir.

Doğal bir yıldız çökmesi bir kara delik yaratabilmektedir. Kaçınılmaz olan bir yıldızın yaşamının sonu, yıldız olduğundan kaynaklı tüm enerji bittiğinde gerçekleşmektedir. Bir yıldızın içe çöken parçasının kütlesi TOV limit için olan netron-degenerate maddesinden düşük ise bu işlem sonucunda sıkışık yıldız (ak cüce) oluşmaktadır. Oluşan tüm yıldızlar maksimum kütlelerine sahiptir. Bundan dolayı çöken yıldız eğer bu maksimum limiti aşmış ise çökme olayı sonsuza kadar devam eder ve karadeliği oluşturur (Yıkıcı yerçekimsel çöküş).

Nötron yıldızının maksimum kütlesi tam olarak bilinmemektedir. 1939'da 0.7 güneş kütlesi olarak hesaplanmıştır. Buna TOV limit adı verilmiştir. 1996'da diğer bir tahminde ise maksimum kütlenin ortalama 1.5. ile 3 güneş kütlesi arasında olduğu tahmin edilmiştir.

Genel görelilik teorisine göre bir kara delik var olan herhangi bir kütlede meydana gelebilir. Kütle küçüldükçe özkütle yükselir madde kara deliği şekillendirmeye başlar (örn. Schwarzschild yarıçapı –karadeliğin yarıçapı).

Şimdiye kadar birkaç yıldız kütlesinden küçük olarak kara delik şekillendirdiği bilinen herhangi bir kütle gözlemlenmemiştir. 2007'den beri en yüksek kütleli olarak bilinen 15.65±1.45 güneş kütlesi olarak hesaplanmıştır.[] Buna ek olarak IC 10 X-1 X-ray kaynağı Yıldız kütleli bir kara delik olup kütlesinin 24-33 yıldız kütlesi arasında olduğuna dair kanıt bulunmaktadır. 2008'in Nisan ayında Nasa tarafından bildirilen XTE J1650-500 ve ismi bilinmeyen bir karadelik,[3] en küçük kütleli kara delikler olarak bilinmektedir. Bunlar 3.8 yıldız kütlesi ile 24 kilometre yarıçapına sahip kara deliklerdir. Fakat sonrasında bu tahmin geri çekilmiştir. Daha olası olanı ise 5-10 yıldız kütlesi arasında bir kütleye sahip olduklarıdır.

Yıldız kütleli kara deliklerden çok daha devasal 2 diğer tip kara delik olduğuna dair gözlemsel kanıtlar vardır. Bunlar orta-kütleli kara delikler ve devasa kütleli kara deliklerdir ve devasa kütleli bir karadeliğin Samanyolu Galaksisi'nin merkezinde olduğu bilinmektedir.

İkili X-Ray birleşik sistemleri

Yıldız kütleli kara delikler ikili kapalı sistemler olup maddeler yoldaş yıldızın kara deliğine geçtiğinde gözlemlenebilir. Çöküş gerçekleştiğinde bir enerji salınımı olur ve bu salınım o kadar büyüktür ki bir maddeyi birkaç yüz miyon dereceye kadar ısıtabilir ve X-Ray ışınları yayar. Bu sebepten dolayı yoldaş yıldız optik teleskop ile gözlemlenebilirken, kara delikler X-rays ler ile gözlemlenebilir. Kara delikten salınan enerji nötron yıldızı tarafından salınan enerji ile aynı büyüklüğe sahiptir. Kara delikler ve nötron yıldızlarının karşılaştırılması kimi zaman çok güç olabilir.

Buna rağmen nötron yıldızlarının ek özellikleri de mevcuttur. Nötron yıldızları farklı değerlikli dönüşe sahiptir ve bir manyetik alanı vardır. Ayrıca bölgesel patlamalara da sahiptir. (Termonükleer patlamalar)Bu tür özellikler gözlemlendiğinde bu ikili sistemin ortaklaştığı nokta nötron yıldızı olmaktadır.

Türetilen kütleler sıkıştırılmış x-ray kaynaklarını(x-ray ve optik datalar) gözlemlerden elde edilmiştir. Kimliği tespit edilmiş tüm nötron yıldızlarının kütlesi 2 güneş kütlesinin altındadır. Hiçbir 2 güneş kütlesi üzerindeki ikili sistemlerde nötron yıldızının özellikleri ortaya çıkmamıştır. Bu doğruların birleşimine dayanarak 2 güneş kütlesi altındaki yıldızların aslında kara delik olduğu söylenebilir.

Yıldız kütleli kara deliklerin ispatı tamamen deneysel gözlemlere dayanmamakla birlikte temelinde teorik bilgilere dayandığı belirlenmiştir. Bizler bu devasa birleşik kompakt sistemlerdeki yıldızdoğumlu ikili yapıları ise öte yandan kara delik olarak tanımlamışızdır. Kara deliklerin direkt bir kanıtı ise çevresinde karadeliğe düşmekte olan yörüngesel parçacıkların karadeliğe düşmesini kanıtlamak olabilir.

Kara delik mesafeleri

Galaktik düzlemdeki en uzun mesafelerin bazıları kara deliklerdeki doğumsal uzunlukların sonucudur. Kara deliklerdeki doğuşsal hız dağılımı nötron yıldızlarındaki doğumsal hız dağılımlarına benzer değerlere sahiptir. Herhangi biri kara deliklerin daha büyük bir kütleye sahip olduğundan dolayı kara deliklerin nötron yıldızlarından daha düşük bir hızxa sahip olabileceğini düşünebilir fakat kara deliğe düşmekte olan asimetrik maddelerden dolayı kazanılan momentum nötron yıldızı ve kara deliklerin benzer hızlara sahip olmalarını sağlamaktadır.

Adaylar

Samanyolu'nun merkezinde bulunan devasa kütleli kara deliklerden Dünya'ya daha yakın olan birkaç tane yıldız kütleli kara delik adayı içermektedir (BHCs). Bu adayların hepsi x-ray ikili sistemlerdeki compact maddelerinden çöküntüsü ve onun partneri vasıtası ile büyüme diskindedir. Bu aralıktaki Yıldız kütleli kara deliklerin kütleleri 3 ile birkaç düzine arasındaki güneş ağırlığına eşdeğer olmaktadır.[4][5][6]

Name BHC Mass (solar masses) Companion Mass (solar masses) Orbital period (days) Distance from Earth (light years) Location [14]
A0620-00/V616 Mon 11 ± 2 2.6–2.8 0.33 about 3500 06:22:44 -00:20:45
GRO J1655-40/V1033 Sco 6.3 ± 0.3 2.6–2.8 2.8 5000−11000 16:54:00 -39:50:45
XTE J1118+480/KV UMa 6.8 ± 0.4 6−6.5 0.17 6200 11:18:11 +48:02:13
Cyg X-1 11 ± 2 ≥18 5.6 6000–8000 19:58:22 +35:12:06
GRO J0422+32/V518 Per 4 ± 1 1.1 0.21 about 8500 04:21:43 +32:54:27
GRO J1719-24 ≥4.9 ~1.6 possibly 0.6[15]about 8500 17:19:37 -25:01:03
GS 2000+25/QZ Vul 7.5 ± 0.3 4.9–5.1 0.35 about 8800 20:02:50 +25:14:11
V404 Cyg 12 ± 2 6.0 6.5 about 10000 20:24:04 +33:52:03
GX 339-4/V821 Ara 5–6 1.75 about 15000 17:02:50 -48:47:23
GRS 1124-683/GU Mus 7.0 ± 0.6 0.43 about 17000 11:26:27 -68:40:32
XTE J1550-564/V381 Nor 9.6 ± 1.2 6.0–7.5 1.5 about 17000 15:50:59 -56:28:36
4U 1543-475/IL Lupi 9.4 ± 1.0 0.25 1.1 about 24000 15:47:09 -47:40:10
XTE J1819-254/V4641 Sgr 7.1 ± 0.3 5–8 2.82 24000 – 40000[16]18:19:22 -25:24:25
GRS 1915+105/V1487 Aql 14 ± 4.0 ~1 33.5 about 40000 19:15;12 +10:56:44
XTE J1650-500 9.7 ± 1.6 [17]. 0.32[18]16:50:01 -49:57:45


Kaynakça

  1. ^ Celotti, A.; Miller, J.C.; Sciama, D.W. (1999). "Astrophysical evidence for the existence of black holes". Classical and Quantum Gravity. 16 (12A): A3-A21. arXiv:astro-ph/9912186 $2. Bibcode:1999CQGra..16A...3C. doi:10.1088/0264-9381/16/12A/301. 
  2. ^ Nature 575, 618–621 (2019) (27 Kasım 2019)
  3. ^ [1] 27 Aralık 2014 tarihinde Wayback Machine sitesinde arşivlendi.
  4. ^ [2]5 Kasım 2015 tarihinde Wayback Machine sitesinde arşivlendi.
  5. ^ [3]5 Kasım 2015 tarihinde Wayback Machine sitesinde arşivlendi.
  6. ^ [4]5 Kasım 2015 tarihinde Wayback Machine sitesinde arşivlendi.
  1.  Celotti, A.; Miller, J.C.; Sciama, D.W. (1999). "Astrophysical evidence for the existence of black holes". Classical and Quantum Gravity 16 (12A): A3–A21. arXiv:astro-ph/9912186. doi:10.1088/0264-9381/16/12A/301.
  2. Y  Hughes, Scott A. (2005). "Trust but verify: The case for astrophysical black holes". arXiv:hep-ph/0511217 [hep-ph].
  3. Y  I. Bombaci (1996). "The Maximum Mass of a Neutron Star". Astronomy and Astrophysics 305: 871–877. Bibcode:1996A&A...305..871B..
  4. Y  Nature 449, 799–801 (18 October 2007)
  5. Y  Prestwich et al., The Astrophysical Journal, volume 669, part 2 (2007), pages L21–L24
  6. Y  http://nasa.gov/centers/goddard/news/topstory/2008/smallest_blackhole.html 3 Aralık 2017 tarihinde Wayback Machine sitesinde arşivlendi.
  7. Y  http://astronomy.com/asy/default.aspx?c=a&id=6779 12 Haziran 2008 tarihinde Wayback Machine sitesinde arşivlendi.
  8. Y  http://msnbc.msn.com/id/23904291/ 3 Kasım 2012 tarihinde Wayback Machine sitesinde arşivlendi.
  9. Y  Investigating stellar-mass black hole kicks, Serena Repetto, Melvyn B. Davies, Steinn Sigurdsson, (Submitted on 14 Mar 2012 (v1), last revised 19 Jun 2012 (this version, v2))
  10. Y  Natal Kicks of Stellar-Mass Black Holes by Asymmetric Mass Ejection in Fallback Supernovae, H.-Thomas Janka (Max Planck Institute for Astrophysics, Garching) (Submitted on 31 May 2013)
  11. Y  J. Casares: Observational evidence for stellar mass black holes. Preprint
  12. Y  M.R. Garcia et al.: Resolved Jets and Long Period Black Hole Novae. Preprint
  13. Y  J.E. McClintock and R.A. Remillard: Black Hole Binaries. Preprint
  14. Y  ICRS coordinates obtained from SIMBAD. Format: right ascension (hh:mm:ss) ±declination (dd:mm:ss).
  15. Y  Masetti, N.; Bianchini, A.; Bonibaker, J.; della Valle, M.; Vio, R. (1996), "The superhump phenomenon in GRS 1716-249 (=X-Ray Nova Ophiuchi 1993)", A&A 314
  16. Y  Orosz et al. A Black Hole in the Superluminal source SAX J1819.3-2525 (V4641 Sgr) Preprint
  17. Y  Scientists Discovered the Smallest Black Hole
  18. Y  Orosz, J.A. et al. (2004) ApJ 616,376–382.[1], Volume 616, Issue 1, pp. 376–382

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Nötron yıldızı</span> dev yıldızların ölümünden sonra arda kalan yoğun nötron topu

Nötron yıldızı, yıldızların yaşamlarının son bulabileceği biçimlerden biridir. Bir nötron yıldızı, dev bir yıldızın Tip II, Tip Ib veya Tip Ic süpernova olarak patladıktan sonra geri kalan kısmın kendi içine çökmesiyle oluşur. Bu yıldızlar neredeyse tamamen nötronlardan oluşsa da az miktarda proton ve elektron da içerir. Bu proton ve elektronlar olmadan, nötron yıldızları uzun süre var olmaya devam edemezdi. Çünkü nötronlar serbest haldeyken kararsızdır ve beta ışıması yaparak kısa süre içinde proton ve elektronlara ayrışır. Ancak yıldızın içindeki yüksek basınç sebebiyle proton ve elektronların birleşerek nötronlara dönüşmesi, nötron yıldızlarının daha kararlı bir yapıya sahip olmasını sağlar.

<span class="mw-page-title-main">Kara delik</span> çekim alanı her türlü maddesel oluşumun ve ışınımın kendisinden kaçmasına izin vermeyecek derecede güçlü olan, genellikle yüksek kütleli gök cismi

Kara delik; astrofizikte, çekim alanı her türlü maddesel oluşumun ve ışınımın kendisinden kaçmasına izin vermeyecek derecede güçlü olan, büyük kütleli bir gök cismidir. Kara delik, uzayda belirli nitelikteki maddenin bir noktaya toplanması ile meydana gelen bir nesnedir de denilebilir. Bu tür nesneler ışık yaymadıklarından kara olarak nitelenirler. Kara deliklerin "tekillik"leri nedeniyle, üç boyutlu olmadıkları, sıfır hacimli oldukları kabul edilir. Kara deliklerin içinde ise zamanın yavaş aktığı veya akmadığı tahmin edilmektedir. Kara delikler Einstein'ın genel görelilik kuramıyla tanımlanmışlardır. Doğrudan gözlemlenememekle birlikte, çeşitli dalga boylarını kullanan dolaylı gözlem teknikleri sayesinde keşfedilmişlerdir. Bu teknikler aynı zamanda çevrelerinde sürüklenen oluşumların da incelenme olanağını sağlamıştır. Örneğin, bir kara deliğin potansiyel kuyusunun çok derin olması nedeniyle yakın çevresinde oluşacak yığılma diskinin üzerine düşen maddeler diskin çok yüksek sıcaklıklara erişmesine neden olacak, bu da diskin yayılan x-ışınları sayesinde saptanmasını sağlayacaktır. Günümüzde, kara deliklerin varlığı, ilgili bilimsel topluluğun hemen hemen tüm bireyleri tarafından onaylanarak kesinlik kazanmış durumdadır.

<span class="mw-page-title-main">Şişkinlik (gökbilim)</span>

Astronomide galaktik şişkinlik bir sarmal gökadanın yoğun merkezi bölgesidir. Bu şişkinlik, gökadanın geri kalanından net bir şekilde ayrılır. Bir yandan, yüksek yoğunluğu nedeniyle çok daha parlak görünür, diğer yandan da genellikle disk düzleminin çok ötesinde bir şişkinlik gösterir. Çok uzak gökadalar söz konusu olduğunda, şişkinlik genellikle gökadadan görülebilen tek şeydir ve bu şişkinlik, eliptik gökadaları andırır.

<span class="mw-page-title-main">Galaksi merkezi</span>

Gökada merkezi, Samanyolu Gökadası'nın dönüş merkezidir. Dünya'dan uzaklığı, Samanyolu'nun parlak noktası; Yay, Yılancı ve Akrep takımyıldızları yönünde, 25,000 ışık yılı dir. Samanyolu'nun gökada merkezinde, Sagittarius A* süper büyük kütleli kara delik olduğu şüphesi vardır.

<span class="mw-page-title-main">Cygnus X-1</span>

Cygnus X-1, Kuğu takımyıldızı bölgesinde bulunan ve içinde kara delik olduğu düşünülen tanınmış bir galaktik X-ışını kaynağıdır. Bir roket uçuşu sırasında 1964 yılında keşfedilmiştir ve Dünya'dan görülen en güçlü x-ışını kaynaklarından birisidir. Cygnus X-1, geniş ölçüde bir kara delik olduğu kabul edilen ilk X-ışını kaynağıdır ve kendi sınıfında en çok incelenen astronomik nesneler arasındadır. Güneş'in 14,8 katı bir kütleye sahip olduğu tahmin edilmektedir ve bu tür bilinen diğer yıldızlara veya kara deliklere göre çok küçük olduğu gösterilmiştir. Şayet öyleyse, olay ufkunun yarıçapı yaklaşık olarak 44 km olmalıdır.

Yıldız evrimi bir yıldızın yaşamı boyunca maruz kaldığı radikal değişikliklerin bir sürecidir. Yıldız'ın kütlesine bağlı olarak bu yaşam süresi, birkaç milyon yıldan, trilyonlarca yıla ulaşabilir, evrenin yaşı göz önüne alındığında bu çok fazladır.

<span class="mw-page-title-main">Messier 87</span> galaksi

Messier 87 Başak takımyıldızı bölgesinde yaklaşık olarak 72,08 MIy (22,1 Mpc)uzaklıkta bulunan dev bir eliptik gökadadır. Charles Messier tarafından 18 Mart 1781 tarihinde keşfedildi. Messier, gözlem defterine düştüğü notta gökada için "içinde yıldız olmayan bir bulutsu" diyordu. Oysa Messier'in yıldızsız bulutsu sandığı şey, en az birkaç yüz milyar yıldızdan oluşmuş dev bir sistemdi. Halton Arp tarafından görüntülenmiş ve Arp 151 olarak "Fışkırmalara sahip gökadalar" kategorisi altında Tuhaf Gökadalar Atlası'na dahil edilmiştir.

<span class="mw-page-title-main">Sagittarius A*</span> Samanyolu Galaksisinin merkezinde yer alan süperkütleli kara delik

Sagittarius A*, Samanyolu'nun Galaktik Merkezi'ndeki süper kütleli kara deliktir. Yay ve Akrep takımyıldızlarının sınırında, ekliptiğin yaklaşık 5,6° güneyinde, Kelebek Kümesi (M6) ve Lambda Scorpii'ye görsel olarak yakın bir konumda yer alır.

<span class="mw-page-title-main">Süper kütleli kara delik</span>

Süper kütleli kara delikler, kara deliklerin en büyükleridir. Milyarlarca güneş kütlesi büyüklüğünde olabilirler. Çoğunlukla -ya da muhtemelen tüm- galaksiler galaktik merkezlerinde bir süper kütleli kara delik bulundururlar. Samanyolu Galaksisi'nin galaktik merkezindeki süper kütleli kara deliğin Sagittarius A* olduğu düşünülmektedir.

<span class="mw-page-title-main">X ışını ikilisi</span>

X-ışını ikilileri, X-ışınlarında aydınlık olan ikili yıldızların bir sınıfıdır. X-ışınları bir maddenin verici denilen (genellikle normal bir yıldızın) bir bileşeninden bir beyaz cücenin, nötron yıldızının ya da kara deliğin sıkıştırılmasından oluşan kütle alıcı denilen diğer bileşenine düşmesiyle üretilir. Birbirlerini çeken madde X-ışınları gibi, geriye kalan kütlesinin birkaç ondalığı kadar, yerçekimi potansiyel enerjisini serbest bırakır. (Hidrojen füzyon, geriye kalan kütlenin sadece yüzde 0.7sini serbest bırakır.) Tipik sabit düşük kütleli bir X-ışını ikilisinden saniyede tahmini 1041 pozitron kaçmaktadır.

Mikro kara delikler, mekanik kuantum kara delikleri veya mini kara delikler olarak da adlandırılır, varsayımsal minik kara delikler, kuantum mekaniği etkileri için önemli bir rol oynar.

<span class="mw-page-title-main">İkili kara delik</span>

İkili kara delik, iki kara deliğin birbirine yakın bir yörüngede bulunduğu sistemdir. Yıldızsal ikili kara delik sistemleri ve süper kütleli ikili kara delik sistemleri olarak iki alt grupta incelenebilir. Yıldızsal ikili kara delik sistemleri büyük kütleli çift yıldız sistemlerinin kalıntısıdır. Süper kütleli ikili kara delik sistemlerinin ise galaksilerin birleşmesi ile oluştuğu düşünülmektedir.

4U 0614+091, Avcı takımyıldızı bölgesinde yaklaşık olarak 10 ışık yılı uzaklıkta bulunan bir Nötron yıldızı ve beyaz cüce olduğu düşünülen düşük kütleli bir yıldızın eşlik ettiği X-ışını ikili yıldız sistemidir. Bu iki bileşen birbirine o kadar yakındır ki, beyaz cücenin kütlesi nötron yıldızına doğru akar. Bir mikrokuasar gibi jet üretir ve bu sistemde ilk defa kara delikten başka bir nesnenin jet ürettiği gösterilmiştir.

Blanet, doğrudan kara deliklerin yörüngesinde dönen varsayımsal bir ötegezegen sınıfının bir üyesidir.

<span class="mw-page-title-main">S5 0014+81</span>

S5 0014+81, Kral takımyıldızının yüksek deklinasyon bölgesinde, Kuzey Ekvator Kutbu yakınlarında bulunan uzak, kompakt, aşırı parlak ve geniş soğurma çizgisine sahip bir kuasar veya blazardır.

<span class="mw-page-title-main">ESO 444-46</span> süperdev eliptik gökada

ESO 444-46, Erboğa takımyıldızında Abell 3558 gökada kümesinin baskın ve en parlak üyesi olan ve yaklaşık olarak 636 MIy (195 Mpc) uzaklıkta bulunan süperdev bir eliptik gökadadır. En yakın komşu süperkümelerden biri olan devasa Shapley Süperkümesi'nin çekirdeğinde yer alır. Yerel evrendeki en büyük gökadalardan biridir ve muhtemelen bilinen en büyük kara deliklerden birini içermektedir. Kara deliğin kütlesi çok belirsizdir ve tahminler 501 milyon M gibi düşük bir değer ile 77,6 milyar M gibi yüksek bir değer aralığında değişir.

<span class="mw-page-title-main">En büyük kütleli kara delikler listesi</span> Vikimedya liste maddesi

Bu, şimdiye kadar keşfedilen en büyük kara deliklerin (ve olası adayların) güneş kütlesi birimleri (M☉, M = yaklaşık 2×1030 kg) cinsinden ölçülen, sıralı bir listesidir.

Kara deliklerin bu listesi kütleye göre düzenlenmiştir ; Bu listedeki bazı öğeler, bir kara deliğin etrafında organize olduklarına inanılan galaksiler veya yıldız kümeleridir. Mümkün olan yerlerde Messier ve New General Catalogue (NGC) adları verilmiştir.

<span class="mw-page-title-main">Astrofiziksel jet</span> Dönen bir astronomik cismin ekseni boyunca akan iyonize madde ışını

Astrofiziksel jet, iyonize olmuş maddenin dönüş ekseni boyunca uzamış ışınlar şeklinde dışarı atıldığı astronomik bir olgudur. Işındaki büyük ölçüde hızlandırılmış madde ışık hızına yaklaştığında, astrofiziksel jetler özel görelilik etkileri gösterdiği için relativistik jetler haline gelir.