İçeriğe atla

Yörüngesel kuantum sayısı

Bir atomik yörünge için açısal nicem sayısı, yörüngesel açısal devinirliği ve yörüngenin şeklini belirleyen sayıdır. Açısal nicem sayısı bir elektronun eşsiz nicem durumunu tanımlayan ikinci set nicem sayılarındandır (diğerleri esas nicem sayılarıdır; spektroskopik gösterim, mıknastıssal nicem sayısı ve fırıl nicem sayısı). Açısal nicem sayısı; yörüngesel açısal nicem sayısı, yörüngesel nicem sayısı ya da ikinci nicem sayısı olarak da bilinir. ℓ ile sembolize edilir.

Türetim

Nicem mekaniksel açısal yörünge devinirliği görseli.

Bir atomun elektronlarının enerji durumlarıyla ilgili olan dört nicem sayısı seti: n, , m ve ms. Bunlar bir atomdaki tekil elektronun tamamen ve eşsiz nicem durumunu belirleyerek dalgafonksiyonu ve yörüngesini oluşturur. Schrödinger dalga eşitliğinin dalga fonksiyonu çözüldüğü zaman ilk üç nicem numarasına yönelen üç eşitliğe düşer. Öyleyse ilk üç nicem sayısının denklemleri ilişkilidir. Açısal nicem sayısı aşağıda gösterilen dalga fonksiyonunun kutup parçasının çözümüyle ortaya çıkmıştır. Açısal konsepti anlamaya yardımcı olmak için küresel koordinat sistemini gözden geçirmek veya Kartezyen koordinat sisteminin yanında diğer matematiksel koordinat sistemlerini gösden geçirmek yararlı olabilir. Genelde küresel koordinat sistemi küresel modellerle, silindirik koordinat sistemi silindirik modellerle ve Kartezyen koordinat sistemi genel hacim vs. modellerle ili çalışır.

Bir atomik elektronun açısal devinirliği,L, elektronun nicem sayısı ℓ ile takip eden eşitlik ile bağlantılıdır:

ħ İndirgenmiş Plank sabiti, L2 Yörüngesel açısal devinirlik işleticisi ve Elektronun dalga fonksiyonu.Nicem sayısı ℓ her zaman negatif olmayan bir tam sayıdır: 0,1,2,3, vs. (bkz: Açısal Devinirlik Nicelemesi). Çoğu nicem mekaniğine giriş kitabı L‘den bahseder ancak açısal devinirlik işleticisi olarak kullanılmadığı zaman bir anlamı yoktur. Açısal devinirlikten bahsetmenin en iyi yolu nicem sayısı ℓ ‘yi kullanmaktır. Atomik yörüngeler harflerle gösterilen kendilerine has şekillere sahiptir.

Hidrojen atomunun atomik yörünge dalgafonksiyonları. Sağa yaslı sayılar temel nicem sayılarını, yukarıdaki sayılar açısal nicem sayılarını temsil etmektedir

s, p ve d harfleri atomik yörüngenin şeklini tanımlar.

Dalga fonksiyonları küresel uyumluluğun biçimini almışlardır ve Legendre Polinomları ile tanımlanırlar. ℓ’nin farklı değerleriyle ilişkili çeşitli orbitaller ''alt kabuklar'' olarak tanımlanırlar ve (genelde tarihsel sebeplerden) şekildeki harflerle bashedilirler:

HarfMaks ElektronŞekilİsim
0s2küre(keskin) sharp
1p6ikili halter(temel) principal
2d10dörtlü halter ya da eşsiz şekil bir (dağınık) diffuse
3f14sekizli halter ya da eşsiz şekil iki(esas) fundamental
4g18
5h22
6i26

altkabuğundan sonra gelen harfler, daha önce kullanılanlar hariç, f ‘i alfabetik sıra ile takip ederler.

Harfleri kolay ezberlemek için birkaç (İngilizce) belleteç S. P. D. F. G. H. ... is "Sober Physicists Don't Find Giraffes Hiding In Kitchens Like My Nephew", Smart People Don't Fail, Silly People Drive Fast, silly professors dance funny, Scott picks dead flowers, some poor dumb fool! vs.

Diğer bütün farklı açısal devinirlik durumları 2(2ℓ + 1) tane elektron alabilirler. Bunun sebebi üçüncü nicem sayısı m 'in (z eksenindeki açısal devinirlik vektörünün gevşekçe nicelenmiş yansıması olarak düşünülen) − 'den ℓ'ye gitmesi ve 2 + 1 tane mümkün durum olmasıdır. Her belirgin yörünge n,,m zıt fırıllı iki elektron tarafından işgal edilebilir. (ms nicem sayısı ile verilen), toplamda 2(2 + 1) elektronu olan.Tabloda verilen yörüngelerden daha yüksek ℓ ‘si olan yörüngelere güzelce müsaade edilebilir ancak bu değerler şu ana kadar keşfedilen bütün atomları kapsar.

Bilinen bir nicem sayısı n için, ℓ ‘nin mümkün değer aralığı 0 ‘dan n – 1 ‘e kadardır; Öyleyse  n = 1 kabuğu sadece bir s altkabuğuna hakim olabilir ve sadece 2 elektron alabilir. n = 2 kabuğu sadece s ve p altkabuklarına ve toplamda 8 elektrona sahip olabilir. n = 3 kabuğu s, p ve d altkabuklarına ve toplamda 18 elektrona sahip olabilir. Genel söylem n ‘inci derecedeki maksimum elektron sayısı 2n2 şeklindedir.

Açısal devinirlik nicem sayısı,ℓ, çekirdeğe doğru olan düzlemsel boğumları yönetir. Düzlemsel boğum; orta noktası tepe ve dip arasında ve büyüklüğü 0 olan bir elektromıknatıssal dalga larak tanımlanabilir. Bir s yörüngesindeki çekirdeğe doğru hiçbir boğum yoktur. Öyleyse açısal nicem sayısı ℓ 0 değerini alır. Bir p yörüngesinde çekirdeği çapralayan bir boğum vardır ve ℓ 1 değerini alır.  L ise √2ħ değerini alır.

n ‘nin değerine bağlı olarak, bir açısal nicem sayısı ve takip eden seriler vardır. Hidrojen atomunun dalgaboyları listelenmiştir:

n = 1, L = 0, Lyman serisi (morötesi)
n = 2, L = √2ħ, Balmer serisi (görünür)
n = 3, L = √6ħ, Ritz-Paschen serisi (kızılötesine yakın)
n = 4, L = 2√3ħ, Brackett serisi (kısa dalgaboylu kızılötesi)
n = 5, L = 2√5ħ, Pfund serisi (orta dalgaboylu kızılötesi).

Nicelenmiş Açısal Döndürüme Ek

Bilinen iki nicelenmiş açısal döndürümün, ve , toplamı olan bir nicelenmiş açısal devinirlik ;

Nicem sayısı 'nin büyüklük menzili 'den 'ye kadardır. ve özgün açısal döndürüm nicem sayılarının büyüklüklerini temsil eder.

Atomdaki Bir Elektoronun Toplam Açısal Devinirliği

toplam açısal '''J''' (mor) ‘nin, yörüngesel '''L''' (mavi) ‘nin ve fırıl '''S''' (yeşil) ‘nin devinirliklerinin "Vektör konileri". Koniler ölçülen açısal devinirlik bileşenlerinin arasındaki nicem belirsizliğinden dolayı ortaya çıkar.

Atomdaki fırıl-yörünge etkileşimine göre yörüngesel açısal devinirlik hem Hamiltonian ile sırabağımsızdır hem de fırıl yapmaz. Bu nedenle zamanla değişir. Ancak toplam açısal devinirlik J Hamiltonian ile öndelenir ve sabittir. J ;

L yörüngesel açısal devinirlik ve S fırıldır. TToplam açısal devinirlik aynı öndelenim ilişkisini karşılar.

takip eden

Ji ; Jx, Jy ve Jz'yi tanımlar.

Dalgaboyu 'de J 'nin etkinliğinde tanımlanan j ve mj nicem sayıları zamanla sabitlenen sistemi tanımlar.

Yani j toplam açısal devinirlik modeli ve mj 'nin belirli bir eksende yansıması ile ilişkilidir. Nicem mekaniğindeki her açısal devinirlik gibi, J 'nin diğer eksenlerdeki yansıması Jz ile tanımlanamaz çünkü öndelenemezler.

Eski ve Yeni Nicem Sayıları Arasındaki İlişki

j ve mj, birlikte nicem durumunun eşleri üç nicem sayısı , mℓ ve ms ‘in yerini alırlar (fırılın belirli bir eksen boyunca yansıması).Eski nicem numaraları sonrakiler ile ilişkilendirilebilir.

Dahası j, mj ve eşlersayısının özvektörler aynı zamanda Hamiltonian’ın özvektörleri; , m and ms ‘in özvektörlerinin doğrusal kombinasyonlarıdır.

Açısal Devinirlik Nicem Sayılarının Listesi

  • Fırıl açısal devinirlik nicem sayısı veya basit fırıl nicem sayısı.
  • Yörüngesel açısal devinirlik nicem sayısı (Bu makalenin konusu).
  • Mıknatıssal nicem sayısı, yörüngesel açısal devinirlik nicem sayısı ile alakalı.
  • Toplam açısal devinirlik nicem sayısı.

Tarihçe

Açısal nicem sayısı Bohr atom modelinden süregelmiştir ve Arnold Sommerfeld tarafından oluşturulmuştur.[1] Bohr atom modeli atomun spektroskopik analizi ile Rutherford atom modelinin birleştirilmesinden türetilmiştir. En düşük nicem seviyesinin açısal devinirliği sıfır bulunmuştur. Sıfır açısal devinirlikli yörüngeler tek boyutta salınım yapan yükler olarak düşünülmüştür ve sarkaç yörüngeleri olarak tanımlanmışlardır.[2] 3 boyutta yörüngeler büyük bir çemberde salınan zıplama ipine benzeyen çekirdeği çaprazlayan boğumlar içermeyen küresellere dönüşürler.

Ayrıca bakınız

  • Açısal devinirlik işleticisi
  • Temel nicem sayıları
  • Küresel simetri potansiyelinde parçacık
  • Nicem sayısı
    • Mıknatıssal nicem sayısı
    • Temel nicem sayısı
    • Fırıl nicem sayısı
    • Toplam açısal devinirlik nicem sayısı
  • Açısal devinirlik eşleme
  • Clebsch–Gordan katsayıları

Kaynakça

  1. ^ Eisberg, Robert (1974). Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles. New York: John Wiley & Sons Inc. ss. 114-117. ISBN 978-0-471-23464-7. 
  2. ^ R.B. Lindsay (1927). "Note on "pendulum" orbits in atomic models". Proc. Nat. Acad. Sci. Cilt 13. ss. 413-419. doi:10.1073/pnas.13.6.413. []

Dış bağlantılar

İlgili Araştırma Makaleleri

Schrödinger denklemi, bir kuantum sistemi hakkında bize her bilgiyi veren araç dalga fonksiyonu adında bir fonksiyondur. Dalga fonksiyonunun uzaya ve zamana bağlı değişimini gösteren denklemi ilk bulan Erwin Schrödinger’dir. Bu yüzden denklem Schrödinger denklemi adıyla anılır. 1900 yılında Max Planck'ın ortaya attığı "kuantum varsayımları"nın ardından, 1924'te ortaya atılan de Broglie varsayımı ve 1927'de ortaya atılan Heisenberg belirsizlik ilkesi bilim dünyasında yeni ufukların doğmasına sebep olmuştur. Bu gelişmeler Max Planck'ın kuantum varsayımları ve Schrödinger'in dalga mekaniği ile birleştirilerek kuantum mekaniğini ortaya çıkarmıştır.

<span class="mw-page-title-main">Dalga fonksiyonu</span>

Kuantum fiziğinde dalga fonksiyonu izole bir kuantum sistemindeki kuantum durumunu betimler. Dalga fonksiyonu karmaşık değerli bir olasılık genliğidir ve sistem üzerindeki olası ölçümlerin olasılıklarının bulunmasını sağlar. Dalga fonksiyonu için en sık kullanılan sembol Yunan psi harfidir ψ ve Ψ.

<span class="mw-page-title-main">Bose-Einstein yoğunlaşması</span>

Bose-Einstein yoğunlaşması (BEY), parçacıkları bozonlardan oluşan maddelerin en alt enerji seviyesinde yoğunlaştığı, kuantum etkilerinin gözlenebildiği maddenin bir halidir. Bozonik atomlar için, seyreltilmiş gaz halinde lazer soğutması aracılığıyla mutlak sıfır sıcaklığına doğru inilerek bu hale geçiş yani yoğunlaşma sağlanabilir. Atomların klasik gazlardan farklı olarak Maxwell-Boltzmann istatistiği yerine Bose-Einstein istatistiğine makroskobik olarak/büyük ölçekte uyması BEY'nin belirleyici özelliğidir.

<span class="mw-page-title-main">Enerji seviyesi</span>

Enerji seviyesi, atom çekirdeğinin etrafında katman katman biçiminde bulunan kısımların her biridir. Bu yörüngelerde elektronlar bulunur. Yörüngenin numarası; 1, 2, 3, 4, ... gibi sayı değerlerini alabilir. Yörünge numarasına baş kuantum sayısı da denir ve "n" ile gösterilir. Yörünge numarası ile yörüngenin çekirdeğe uzaklığı doğru orantılıdır.

<span class="mw-page-title-main">Kuantum mekaniği</span> atom altı seviyede çalışmalar yapan bilim dalı

Kuantum mekaniği veya kuantum fiziği, atom altı parçacıkları inceleyen bir temel fizik dalıdır. Nicem mekaniği veya dalga mekaniği adlarıyla da anılır. Kuantum mekaniği, moleküllerin, atomların ve bunları meydana getiren elektron, proton, nötron, kuark, gluon gibi parçacıkların özelliklerini açıklamaya çalışır. Çalışma alanı, parçacıkların birbirleriyle ve ışık, x ışını, gama ışını gibi elektromanyetik ışınımlarla olan etkileşimlerini de kapsar.

Kuantum mekaniğine göre atomik orbital, elektronların atom çekirdeği etrafındaki konumunu ve dalga-benzeri özelliklerini tanımlayan bir matematiksel fonksiyondur. Elektronun atom çekirdeği etrafındaki belirli bir bölgede bulunma olasılığı bu fonksiyon aracılığı ile hesaplanabilir. Fizikte atomik, kimyada orbital olarak geçer.

Compton dalgaboyu bir parçacığın kuantum mekaniği özelliğidir. Compton dalgaboyu Arthur Compton tarafından elektronların foton saçılması olayı izah edilirken gösterilmiştir. Bir parçacığın Compton dalga boyu; enerjisi parçacığın durgun kütle enerjisine eşit olan fotonun dalgaboyuna eşittir. Parçacığın Compton dalgaboyu ( λ) şuna eşittir:

Kuantum harmonik salınıcı, klasik harmonik salınıcın benzeşiğidir. Rastgele seçilmiş potansiyeli denge noktası civarında harmonik potansiyele yakınsanabildiğinden nicem mekanğindeki en önemli model sistemlerden biridir. Dahası, nicem mekaniğinde kesin analitik çözümü olan çok az sistemden biridir.

<span class="mw-page-title-main">Küresel harmonikler</span>

Matematikte, küresel harmonikler Laplace denkleminin çözüm kümesinin açısal kısmıdır. Küresel koordinatların bir sistemi içinde küre yüzeyinde tanımlanır, Fourier serisi ise çember üzerinde tanımlanır. Laplace'ın küresel harmonikleri Pierre Simon de Laplace tarafından ilk 1782 yılında tanıtılan bir ortogonal sistemin küresel harmonik formlarının özel bir kümesidir. Küresel harmoniklerden birkaçının kökleri sağda gösterimlenmiştir. Küresel harmonikler pek çok yerde teorik önem taşımaktadır ve özellikle atomik yörünge elektron konfigürasyonları, yerçekimi alanları, geoitleri ve gezegen ve yıldızların manyetik alanlarının temsili ve kozmik mikrodalga arka plan radyasyonu karakterizasyonu hesaplanmasında kullanılan pratik uygulamaları vardır. Küresel harmonikler 3D Bilgisayar grafiklerinde, dolaylı aydınlatma ve 3D şekillerin tanınması gibi konularda geniş bir yelpazede özel bir rol oynamaktadır.

Foton polarizasyonu klasik polarize sinüsoidal düzlem elektromanyetik dalgasının kuantum mekaniksel açıklamasıdır. Bireysel foton özdurumları ya sağ ya da sol dairesel polarizasyona sahiptir. Süperpozisyon özdurumu içinde olan bir foton lineer, dairesel veya eliptik polarizasyona sahip olabilir.

Bohr yarıçapı bir fizik sabitidir. Hidrojen atomunun, protonu ve elektronu arasındaki mesafeye eşittir. Bohr yarıçapının, bir atomda Bohr atom modeli içindeki rolünden dolayı adlandırılmak istenmiştir. Fakat bu olay Niels Bohr'dan sonra gerçekleşmiştir. Uluslararası birimler sisteminde Bohr yarıçapı:

 : serbest uzayın elektriksel geçirgenliği
 : Planck sabiti
 : elektronun kütlesi
 : elemanter yük
 : ışık hızı sabiti
 : ince yapı sabiti

Modern kuantum (nicem) mekaniğinden önce gelen eski kuantum (nicem) kuramı, 1900 ile 1925 yılları arasında elde edilen sonuçların birikimidir. Bu kuramın, klasik mekaniğin ilk doğrulamaları olduğunu günümüzde anladığımız bu kuram, ilk zamanlar tamamlanmış veya istikrarlı değildi. Bohr modeli çalışmaların odak noktasıydı. Eski kuantum döneminde, Arnold Sommerfield, uzay nicemlenimi olarak anılan açısal momentumun (devinimin) z-bileşkesinde nicemlenim yaparak önemli katkılarda bulunmuştur. Bu katkı, electron yörüngelerinin dairesel yerine eliptik olduğunu ortaya çıkarmıştır ve kuantum çakışıklık kavramını ortaya atmıştır. Bu kuram, electron dönüsü hariç Zeeman etkisini açıklamaktadır.

Dalga vektörü, fizikte dalgayı ifade etmemize yardımcı olan vektördür. Herhangi bir vektör gibi, yöne ve büyüklüğe sahiptir. Büyüklüğü dalga sayısı ve açısal dalga sayısıdır. Yönü ise genellikle dalga yayılımının yönüdür. İzafiyet kuramında, dalga vektörü, aynı zamanda dört vektör olarak tanımlanabilir.

<span class="mw-page-title-main">Rydberg atomu</span>

Rydberg atomu çok yüksek temel nicem sayılı bir veya iki elektrona sahip bir uyarılmış atomdur Bu atomlar elektrik ve manyetik alana abartılı tepkiler vermeyi de içinde barındıran, uzun bozunma devri ve yaklaşık elektron dalgafonksiyonları, bazı şartlar altında çekirdekler etrafındaki elektronların klasik yörüngeleri gibi kendilerine has birçok özelliğe sahiptir. Çekirdek elektronları dış elektronları çekirdeğin elektrik alanından kalkanlar, öyle ki belirli bir mesafeden hidrojen atomundaki bir elektronun tecrübe ettiği gibi elektrik potansiyeli belirleyicidir.

Lamb kayması, adını Willis Lamb'den alan, hidrojen atomunun kuantum elektrodinamiğindeki 2S1/2 ve 2P1/2 enerji düzeyleri arasındaki küçük farklılıktır. Dirac denklemine göre, 2S1/2 ve 2P1/2 orbitalleri (yörüngeleri) aynı enerjiye sahip olmalıdır. Ancak, boşluktaki elektronlar arasındaki etkileşim, 2S1/2 ve 2P1/2 enerji düzeylerinde küçük bir enerji değişimine sebep olur. Lamb ve Robert Retherford bu değişimi 1947'de ölçmüşlerdir ve bu ölçüm, ıraksamayı açıklamak için tekrar normalleştirme teorisine teşvik edici bir unsur olmuştur. Bu, Julian Schwinger, Richard Feynman, Ernst Stueckelberg ve Sin-Itiro Tomonaga tarafından geliştirilmiş modern kuantum elektrodinamiğinin müjdecisiydi. Lamb, 1955 yılında Lamb kayması ile ilgili keşiflerinden ötürü Nobel Fizik Ödülü'nü kazandı.

Atom fiziğinde, iki-elektron atomu veya Helyumumsu atom olarak adlandırılan, sadece iki elektron ve Z kadar yüklü bir çekirdek ihtiva eden kuantum mekaniksel bir sistemdir. Bu husus, Pauli dışlama ilkesinin ana rolü üstlendiği ilk çok elektronlu sistemler meselesidir.

Fizikte, kısmen kuantum (nicem) mekaniğinde, atomun vektör modeli atom modelinin açısal momentum (devinim) cinsinden tanımıdır. Bu, birden çok elektronlu atomların Rutherford-Bohr-Sommerfeld atom modelinin bir genişletmesi olarak kabul edilebilir.

Kuantum mekaniğinde, spin-yörünge etkileşimi(spin-yörünge etkisi, spin-yörünge bağlaşımı) parçacığın dönüşünün hareketiyle etkileşimidir. En çok bilinen örnek ise, elektronların dönüşü ile elektronların çekirdek etrafındaki dönüşünden dolayı oluşan manyetik alandan dolayı oluşan elektromanyetik etkileşim ve buna bağlı olan elektronların atomik enerji seviyesindeki değişim. Bu tayf çizgilerinden saptanabilir. Buna benzer bir diğer etki proton ve nötronların çekirdekte dönmesinden dolayı oluşan olan Açısal momentum ve güçlü nükleer kuvvet, nükleer kabuk modelindeki değişime neden olur. Spintronik alanında, yarı iletkenlerde ve diğer materyallerde spin yörünge etkileşimi yeni teknolojik gelişimler için araştırılmaktadır.

Kuantum tüneli, parçacığın bariyer boyunca olan kuantum mekaniğini ifade eder. Bu, Güneş gibi yıldızlar dizisinde meydana gelen nükleer birleşmeler gibi birçok fiziksel olayda önemli bir rol oynar. Tünel diyotu, kuantum bilgisayarı ve taramalı tünelleme mikroskobu gibi modern araçlarda önemli uygulamaları vardır. Fiziksel olay olarak etkisi ve kabul görülürlüğü 20. yüzyılın başlarında ve ortalarına doğru geldiği tahmin ediliyor.

Kuantum Şekil Dinamiği yeni yeni çalışılan bir araştırma konusudur. Hedefi şekillerin kuantum mekaniğini, şekil dinamiği arka planında kuantum alanları ve şekil dinamiğinin kuantizasyonunu anlamaktır.