İçeriğe atla

X ışını teleskobu

Uluslararası X ışını gözlemevi

X ışını teleskobu (XRT), uzaktaki objeleri X ışını spektrumunda gözlemlemek için dizayn edilen teleskoptur. X ışınlarına karşı opak olan Dünya atmosferinin üzerine ulaşmak için, X ışını teleskopları yüksek irtifa roketlerine, balonlara veya yapay uydulara montelenmelidir.

Teleskobun temel birimleri teleskoba giren radyasyonu toplayan optik (odaklayan veya hizalayan) ve radyasyonun toplandığı ve ölçüldüğü dedektördür. Bu birimler için çeşitli farklı dizayn ve teknolojiler kullanılmaktadır.

Uyduların üzerinde bulunan teleskopların çoğu birbirini tamamlayıcı özellikte, tamir edilebilir veya alete fonsiyonlar katan kaldırılabilir[1][2] (spektrometre, filtreler) birimlere sahip olan dedektör-teleskop sistemlerinin çeşitli birleşmelerinden oluşmuştur.

Optik

Yaygın X ışını methodları hizalanmış açıklıklar ve toplama etkili aynalardır.

Odaklayan Aynalar

NuSTAR yüksek enerjili X ışını ışığında galaksimizin merkezinde çok büyük bir karadeliğin odaklanmış görüntüsünü yakalamıştır.

X ışını aynaların kullanımı gelen radyasyonun dedektör düzleminde toplanmasına olanak sağlar.

Farklı geometriler (örneğin Kirkpatrick-Baez veya Lobster-gözü tavsiye edilmiş veya uygulanmıştır fakat var olan teleskopların neredeyse tamamı Wolter I dizaynının bazı çeşitlerini kullanır. Bu tarz X ışını teleskoplarının sınırları UV ya da görünür ışık teleskoplarına göre çok daha dar(tipik olarak 1 dereceden küçük) alanlara olanak sağlar.

Tamamlayıcı optiğe göre odaklayıcı optik şunlara izin verir:

  • Yüksek çözünürlüklü bir görüntü
  • Yüksek bir teleskop hassasiyeti: Radyasyon küçük bir alana odaklandığından sinyal-ses oranı bu tarz aletlerde çok çok daha yüksektir.

Aynalar yansıtıcı(altın veya iridyum) ince bir katmanla kaplanmış seramik veya metal folyodan[3] yapılabilir. Bu inşa çalışmasına dayanan aynalar toplanma etkisindeki ışığın toplam yansımasının temelindedir.

Bu teknoloji toplam yansıma için kritik açı ve radyasyon enerjisi arasındaki ters orantı nedeniyle enerji menzili açısından sınırlıdır. 2000 lerin başında Chandra ve XMM-Newton Xışını gözlemevlerinde sınır 15 keV ışık cıvarlarındaydı. Yeni çok tabakalı aynalar kullanılarak, NuSTAR teleskobunun X ışını aynası bu sınırı 79 keV ışığa çekmiştir. Bu seviyede yansıtmak için, cam tabakaları tungsten(W)/ silikon (Si) veya platin(Pt)/ silisyum karbür (SiC) ile kaplanmıştır.[4]

Hizalayan Optik

Eski X ışını teleskopları basit hizalama teknikleri kullanırken (dönen hizalayıcılar, kablo hizalayıcılar)[5] , şu an kullanılan teknoloji menfez kodlamalı maske kullanır. Bu teknik dedektörün önünde menfez desenli yassı bir parmaklık kullanır. Bu dizayn odaklayıcı optikten daha az hassastır ve görüntü kalitesi ve kaynağın pozisyonunun belirlenmesi daha zayıftır. Neyse ki, daha geniş bir görüntüleme alanı sunar ve toplama etkili optiğin etkisiz olduğu yüksek enerjilerde kullanılabilir.

Dedektörler

X ışını teleskopları için dedektörler üzerinde iyonizasyon bölmesi,Geiger sayacları ve Sintilatörlerden CCDler veya CMOS sensörleri gibi görüntüleme dedektörlerine birçok teknoloji kullanılmıştır. Gelecekteki görevler için radyasyon enerjisini muhteşem bir doğrulukla ölçme imkânı suann mikro kalorimetrelerin kullanımı planlanmaktadır.

X Işını Teleskoplarının Kullanıldığı Görevler

SİGMA aleti
SANAT-P aleti
Swift XRT düzeni
MSSTA yı (yukardaki gümüş bölüm) taşıyan iskandil roketi 36.049 White Sands füze sahasında fırlatma rampasında

Exosat

Exosat üzerindeki Wolter I X ışını optiğini kullanan 2 düşük enerji görüntüleme teleskobu 2 odaklama düzlemli dedektörle donatılmıştı:

  • Bir pozisyon-hassasiyet doğru orantılı sayacı (PSD) ve
  • Bir kanal çoklayan dizi (CMA) .[6]

Sert X Işını Teleskobu

OSO 7 üzerinde bir sert X ışını teleskobu vardı. Etkili enerji menzili: 7-550 keV, görüntüleme alanı (FOV) 6.5 °, efektif alan ~64 cm².

Filin Teleskobu

3 tanesi 2-10 keV enerji aralığında 450 cm² toplam keşif yüzey alanına sahip, bir tanesi 0.2-2 keV enerji aralığında 37 cm² efektif yüzeye sahip olmak üzere 4 gaz çıkışlı doğru orantılı sayaçtan oluşan Filin Teleskobu Salyut 4 üzerinde taşındı. FOV bir yarık hizalayıcı tarafından 3° × 10° FWHM ye sınırlanmıştı. Optik sensörleri de içeren aletler X ışını dedektörleriyle birlikte istasyonun dışına monte edilmişti. Güç kaynağı ve ölçme üniteleri istasyonun içindeydi. Dedektörlerin zemin merkezli kalibrasyonu uçuş operasyonu boyunca 3 modda oluştu: atalet yönlendirmesi, orbital yönlendirmesi ve tetkik. 4 enerji kanalında toplanan veri büyük dedektörlerde 2–3.1 keV, 3.1–5.9 keV, 5.9–9.6 keV ve 2–9.6 keV idi. 0.2 keV ayırt edici seviyelerine sahip küçük dedektörde ise 0.55 keV ve 0.95 keV lık veriler toplandı.

SİGMA teleskobu

Sert X ışını ve düşük enerji gama ışını Sigma Teleskobu 800 cm² efektif alan ve 35-1300 keV,[7] 35-1300 keV arası enerjiyi menzili ile ~5° × 5° lik maksimum hassasiyette görüntü alanına sahipti. Maksimum açısal çözünürlük 15 yay-dakikaydı.[8] . %8 ‘de enerji çözünürlüğü 511 keV idi.[9] Sigma teleskobunun görüntüleme yetenekleri Anger kamera ilkesine dayanan kodlamalı maske dedektöründen gelmekteydi.[10]

ART-P X Işını Teleskobu

ART-P X ışını teleskobu görüntüleme için 4-60 keV, spektroskopi ve zamanlama için 4-100 keV enerji menzili kullanmıştır. ART-P teleskobunun URA kodlamalı maske ile pozisyona duyarlı çoklu kablo orantılı sayaçtan(MWPC) oluşan 4 özdeş modülü vardı. Her modül 1.8° × 1.8° lik FOV üreten yaklaşık 600 cm2 lik efektif alana sahipti. Açısal çözünürlük 5 yay-dakika, zamansal ve enerjisel çözünürlükler 6 keV da 3.9 ms ve %22 idi. Alet 8 saatlik sürede Yengeç bulutsusu kaynağının 0.001 i (=1 mCrab) kadar hassasiyete ulaştı. Maksimum zaman çözünürlüğü 4 ms idi.[9][10]

Odaklanan X Işını Teleskobu

Geniş bant X ışını teleskobu (BBXRT) Columbia uzay mekiği üzerinde ASTRO-1 yükünün bir parçası olarak uçurulmuştur. BBXRT orta seviyede bir enerji çözünürlüğü ( 1 keV da 90 eV ile 6 keV da 150 eV) ile geniş bir enerji menzilinde (0.3-12 keV) çalışan ilk odaklanan X ışını teleskobuydu. Segmentlenmiş Si (Li) katı durumda spektrometreli 2 hizalanmış teleskop 5 pikselin her(dedektör A ve B) bileşenindeydi. Toplam FOV 17.4’ çap, merkez piksel FOV 4’ çap. Toplam alan 1.5 keV da 765 cm², 7 keV da 300 cm².

Hızlı MIDEX görevinde XRT(X ışını teleskobu)

Hızlı MIDEX görevinde XRT (0.2-10 keV enerji menzilli) X ışınlarını termoelektriksel olarak soğutulmuş bir CCD üzerine odaklamak için Wolter I teleskobu kullanır. Akıları, spektrumları ve Gama ışın patlamalarının (GRBs) ışık eğrilerini ve 7 dereceden fazla akı değerini kapsayan geniş dinamik bir menzil boyunca parıltıları ölçmek için dizayn edilmiştir. XRT GRB leri tipik bir GRB için 10 saniyelik hedef alma süresi içinde 5-yaysaniyeye kadar doğrulukla belirleyebilir ve GRBlerin X ışını karşılıklarını patlama başlangıcının keşfinden 20-70 sonrasından devam eden günlere/haftalara kadar inceleyebilir.

Tam teleskop uzunluğu 3.500 mm lik bir odak uzunluğu ve 0.51 mlik[11] m lik çap ile 4.67 m dir. Temel yapısal birim teleskobun önündeki ön ve kıç tarafındaki teleskop tüplerini,ayna modülünü, elektron deflektörünü ve iç hiza monitör optiğini ve kamerayı, artı Swift gözlemevine monte noktalarını destekleyen bir alüminyum bank arayüzey flanşıdır.[11]

508 mm çaplı teleskop tüpü grafit lif/siyanat esterinden 2 bölmeli olarak yapılmıştır. Dış grafit lif katman termal genleşmenin uzunlamasına katsayısını minimize etmek için dizayn edilmiştir. İçerideki bileşen ile su buharı veya epoksi kirletici maddelerin gaz çıkışına karşı içten alüminyum folyo buhar bariyeri ile astarlanmıştır.[11] Teleskop kapı montajını ve yıldız izleyicileri destekleyen ve aynaları çevreleyen bir ileri tüpe ve odaksal düzlem kamerasını ve iç optik bölmeleri destekleyen bir arka tüpe sahiptir..[11]

Ayna modülleri iç içe yerleştirilmiş 12 Wolter I toplama etkili aynadan oluşur. Pasif olarak ısıtılmış aynalar altın kaplamalı, 600 m uzunlukta ve 191–300 mm çapta elektroformlu nikeldir..[11]

X ışını görüntüleyicisi 1.15 keV da 120 cm² den fazla bir efektif alana, 23.6x23.6 yaydakikalık görüntü alanına ve yarı güç çapında 18 yay-saniyelik bir açısal çözünürlüğe (θ) sahiptir. Tespit hassasiyeti 104 s içinde 2 × 10−14 erg cm−2s−1 dir. Ayna noktası yayılma fonksiyonu (PSF) eksendeki en iyi odaklanmada 15 yay-saniyelik HPD ye sahip olur. Ayna tüm görüntüleme alanı için daha resmi bir PSF sağlamak üzere hafifçe bulanıklaşmıştır böylece alet PSFsi θ = 18 yay saniyedir.[11]

Normal Etkili X Işını Teleskobu

MSSTA gibi, NIXT de normal etkili yansıtıcı çok katmanlı optik kullanmıştır.[12]

X Işını Teleskoplarının Geçmişi

Wolter I tipi toplama etkili optiği kullanan ilk X ışını teleskobu 1965’te bir roketle taşıma deneyinde güneşin X ışını görüntülerini elde etmek için kullanılmıştır. (R. Giacconi, ApJ 142, 1274 (1965)).

Einstein Gözlemevi (1978-1981), ayrıca HEAO-2 olarak bilinen, yörüngedeki ilk Wolter I tipi teleskobu olan X ışını gözlemevidir (R. Giacconi, ApJ 230,540 (1979)). 0.1- 4 keV enerji menzilinde her tipte yıldızın (süper-nova artıkları, galaksiler ve galaksi kümeleri) yüksek çözünürlükte x ışını görüntülerini elde etmiştir. HEAO-1 (1977-1979) ve HEAO-3 (1979-1981) serideki diğerleriydi. Diğer bir büyük proje ağır X ışını optiğini odaklayan bir X ışını uzay gözlemevi ROSAT tır (1990-1999 arası aktif).

Chandra X ışını gözlemevi NASA, Avrupa Uzay Ajansları, Japonya ve Rusya tarafından son zamanlarda fırlatılan uydu gözlemevleri arasındadır. Chandra yüksek eliptik yörüngede 10 yıldan fazla görev yaparak binlerce 0.5 yay-saniye görüntü ve 0.5-0.8 enerji menzilinde her çeşit objenin yüksek çözünürlüklü spektrumları ile geri döndü. Chandra’dan birçok spektaküler görüntüyü NASA/Godderd websitesinde görülebilir.

2012 Haziranda fırlatılan NuSTAR en yeni X ışını uzay teleskoplarından biridir. Teleskop yüksek enerji menzilinde (3-79 ekV) radyasyonu yüksek çözünürlük ile gözlemler. NuSTAR süpernovadaki 44Ti bozunmalarından gelen 68-78 keV luk sinyallere kadar hassastır.

Yerçekimi ve Ekstrem Manyetizm (GEMS) X ışını polarizasyonunu ölçebilirdi fakat 2012 ‘de iptal edildi..

Ayrıca bakınız

  • X-ray Astronomi

Kaynakça

  1. ^ "Chandra :: About Chandra :: Science Instruments". chandra.si.edu. 3 Ağustos 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 19 Şubat 2016. 
  2. ^ "Instruments". sci.esa.int. 11 Mart 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 19 Şubat 2016. 
  3. ^ "Mirror Laboratory". 1 Mart 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Mayıs 2016. 
  4. ^ "NuStar: Instrumentation: Optics". 30 Haziran 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Mayıs 2016. 
  5. ^ Seward, Frederick D.; Charles, Philip A. Exploring the X-ray Universe - Cambridge Books Online - Cambridge University Press. doi:10.1017/cbo9780511781513. 
  6. ^ Hoff HA (Aug 1983). "Exosat — the new extrasolar x-ray observatory". J Brit Interplan Soc (Space Chronicle). 36 (8). ss. 363-7. Bibcode:1983JBIS...36..363H. 
  7. ^ Mandrou P; Jourdain E.; Bassani; Vedrenne; Paul; Leray; Lebrun; Ballet; Churazov; Gilfanov; Sunyaev; Bogomolov; Khavenson; Kuleshova; Tserenin; Sukhanov (1993). "Overview of two-year observations with SIGMA on board GRANAT". Astronomy and Astrophysics Supplement Series. 97 (97). s. 1. Bibcode:1993A&AS...97....1M. 
  8. ^ Revnivtsev MG; Sunyaev RA; Gilfanov MR; Churazov EM; Goldwurm A; Paul J; Mandrou P; Roques JP (2004). "A hard X-ray sky survey with the SIGMA telescope of the GRANAT observatory". Astron Lett. 30 (8). ss. 527-33. arXiv:astro-ph/0403481 $2. Bibcode:2004AstL...30..527R. doi:10.1134/1.1784494. []
  9. ^ a b "International Astrophysical Observatory "GRANAT"". IKI RAN. 3 Mart 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 5 Aralık 2007. 
  10. ^ a b "GRANAT". NASA HEASARC. 6 Mart 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 5 Aralık 2007. 
  11. ^ a b c d e f Burrows DN; Hill JE; Nousek JA; Kennea JA; Wells A; Osborne JP; Abbey AF; Beardmore A; Mukerjee K; Short ADT; Chincarini G; Campana S; Citterio O; Moretti A; Pagani C; Tagliaferri G; Giommi P; Capalbi M; Tamburelli F; Angelini L; Cusumano G; Bräuninger HW; Burkert W; Hartner GD (Oct 2005). "The Swift X-ray Telescope". Space Sci Rev. 120 (3–4). ss. 165-95. arXiv:astro-ph/0508071 $2. Bibcode:2005SSRv..120..165B. doi:10.1007/s11214-005-5097-2. 
  12. ^ Hoover, R. B.; Walker II, A. B. C.; Lindblom, J. F.; Allen, M. J.; O'Neal, R. H.; DeForest, C. E.; Barbee, T. W., Jr. (1992). "Solar observations with the multispectral solar telescope array". Hoover, Richard B. (Ed.). Proc. SPIE, Multilayer and Grazing Incidence X-Ray/EUV Optics. Multilayer and Grazing Incidence X-Ray/EUV Optics. 1546. s. 175. doi:10.1117/12.51232. 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Optik</span> fizik biliminin bir alt dalı

Optik, ışık hareketlerini, özelliklerini, ışığın diğer maddelerle etkileşimini inceleyen; fiziğin ışığın ölçümünü ve sınıflandırması ile uğraşan bir alt dalı. Optik, genellikle gözle görülebilen ışık dalgalarının ve gözle görülemeyen morötesi ve kızılötesi ışık dalgalarının hareketini inceler. Çünkü ışık bir elektromanyetik dalgadır ve diğer elektromanyetik dalga türleri ile benzer özellikler gösterir.

<span class="mw-page-title-main">Tomografi</span> Penetran dalga kullanarak kesit veya kesit alma yoluyla görüntüleme

Tomografi, radyolojik teşhis yöntemidir. 1915 yılında Fransız hekim Boccage tarafından icat edilmiştir. Fakat kullanıma geçilmesi 1930'ları bulur.

<span class="mw-page-title-main">Gözlemsel astronomi</span>

Gözlemsel astronomi astronomi bilimlerinin, teorik astrofizikten farklı olarak veri almayla ilgilenen bir dalıdır. Ana olarak fiziksel modellerin ölçülebilir içeriklerini bulmaya dayanır. Uygulama olarak, Teleskop ve diğer astronomi araç gereçleri kullanılarak gökcisimlerinin gözlenmesidir.

<span class="mw-page-title-main">Hubble Uzay Teleskobu</span> Uzay teleskobu

Hubble Uzay Teleskobu (HUT), ismi Amerikalı astronom Edwin Hubble'ın anısına verilmiş; Nisan 1990'da STS-31 Görevi esnasında Uzay Mekiği Discovery tarafından Dünya etrafındaki yörüngesine taşınmış bir uzay teleskobudur. İlk uzay teleskopu olmamasına rağmen, HUT en büyüklerindendir ve birçok üstün özelliğe sahiptir. Ayrıca hem hayati öneme sahip bir araştırma aracı olması hem de astronomi için etkili bir halkla ilişkiler unsuru olması nedeniyle çok tanınmıştır.

<span class="mw-page-title-main">X ışını</span> Elektromanyetik radyasyon

X ışınları veya Röntgen ışınları, 0,125 ile 125 keV enerji aralığında veya buna karşılık, dalgaboyu 10 ile 0,01 nm aralığında olan elektromanyetik dalgalar veya foton demetidir. 30 ile 30.000 PHz (1015 hertz) aralığındaki titreşim sayısı aralığına eşdeğerdir. X ışınları özellikle tıpta tanısal amaçlarla kullanılmaktadırlar. İyonlaştırıcı radyasyon sınıfına dahil olduklarından zararlı olabilirler. X ışınları 1895'te Wilhelm Conrad Röntgen tarafından Crookes tüpü (Hittorf veya Lenard tüpleri ile de) ile yaptığı deneyler sonucunda keşfedilmiştir. Klasik fizik sınırları içinde, X-ışınları aynı görünür ışık gibi bir elektromanyetik dalga olup, görünür ışıktan farkı düşük dalga boyu, dolayısıyla yüksek frekansları ve enerjileridir. Morötesi'nin ötesidir. X Işınlarının ötesi ise Gama ışınları'dır.

Fotosel, Fotodetektör, ışık sensörü, optik dedektör, optoelektronik sensör 'ler fotoelektrik etki kullanarak algıladığı ışını elektrik sinyaline dönüştüren veya gelen radyasyona bağlı bir elektrik direnci gösteren bir sensör'dür. Optoelektronik'te "ışık" terimi yalnızca görünür ışığı değil aynı zamanda görünmez kızılötesi ışığı ve ultraviyole radyasyonu'nu da ifade eder.

<span class="mw-page-title-main">Rozet Bulutsusu</span>

Rozet Bulutsusu Samanyolu bölgesinde Tekboynuz takımyıldızı içindeki dev moleküler bulutun bir ucunun kenarında yer alan, büyük ve yuvarlak bir H II bölgesi. Açık yıldız kümesi NGC 2244, bulutsu ile yakından ilgilidir, kümenin yıldızları bulutsunun maddesinden oluşmuştur.

<span class="mw-page-title-main">Ulupınar Gözlemevi</span>

Çanakkale Onsekiz Mart Üniversitesi Astrofizik Araştırma Merkezi (ÇAAM) ve Ulupınar Gözlemevi 2001 yılında kurulmuş, gözlemevi 19 Mayıs 2002 tarihinde resmen açılmıştır. Merkez ve Gözlemevi Çanakkale merkezine 10 km uzaklıkta "Radar Tepesi" nin güney yamacında Ulupınar Köyü'ne yakın bir bölgede, 410 m yükseklikte yer almaktadır.

<span class="mw-page-title-main">GRB 970508</span> 1997de tespit edilen gama ışını patlaması

GRB 970508, 8 Mayıs 1997 günü, saat 21.42'de (UTC) tespit edilmiş bir gama-ışın patlamasıdır. Bir gama-ışın patlaması, uzak galaksilerde meydana gelen ve gama ışını üreten patlamalar ve bunların yol açtığı çok parlak parıltıdır. Genelde uzun süren bir "artık parıltı" tarafından izlenirler.

<span class="mw-page-title-main">Gama ışını astronomisi</span>

Gama-ışını astronomisi, foton enerjileri 100 keV'den yüksek olan elektromanyetik radyasyonun en yüksek enerjili formu olan gama ışınlarının astronomik gözlemleridir. 100 keV altı radyasyonlar X-ışınları olarak sınıflandırılır ve X-ışını astronomisinin konusudur. Astronomik literatür genelde “gama-ışınlarını” sıfat olarak kullanıldığı zaman tire ile, isim olarak kullanıldğında “gamma ray” şeklinde tiresiz yazar.

<span class="mw-page-title-main">X ışını ikilisi</span>

X-ışını ikilileri, X-ışınlarında aydınlık olan ikili yıldızların bir sınıfıdır. X-ışınları bir maddenin verici denilen (genellikle normal bir yıldızın) bir bileşeninden bir beyaz cücenin, nötron yıldızının ya da kara deliğin sıkıştırılmasından oluşan kütle alıcı denilen diğer bileşenine düşmesiyle üretilir. Birbirlerini çeken madde X-ışınları gibi, geriye kalan kütlesinin birkaç ondalığı kadar, yerçekimi potansiyel enerjisini serbest bırakır. (Hidrojen füzyon, geriye kalan kütlenin sadece yüzde 0.7sini serbest bırakır.) Tipik sabit düşük kütleli bir X-ışını ikilisinden saniyede tahmini 1041 pozitron kaçmaktadır.

<span class="mw-page-title-main">X ışını astronomisi</span>

X-ışını astronomisi, astronomik nesnelerin X-ışınının gözlem ve algılama çalışmalarıyla uğraşan astronominin bir dalıdır. X-ışınları Dünya’nın atmosferi tarafından emildiği için x-ışınlarını tespit eden balon, sondaj roketleri ve uydular belirli bir yükseklikte bulunmalıdır. X-ışını astronomisi, Mauna Kea Gözlemevlerindeki gibi standart ışık emilimi olan teleskoplardan daha ilerisini gören uzay teleskopları ile ilgili bir uzay bilimidir.

<span class="mw-page-title-main">Optik teleskop</span>

Optik teleskoplar esas olarak elektromanyetik spektrumun görünür ışık kısmından ışığı toplayan ve odaklayan teleskop çeşididir. Kullanım amacı bakılan nesnenin doğrudan görünümü için büyütülmüş görüntüsünü oluşturmak, fotoğrafını çekmek ya da elektronik görüntü sensörleri üzerinden veri toplamaktır.Optik teleskop, başlıca elektromanyetik spektrumun görünür bölgesinden olmak üzere direkt görüş için büyütülmüş bir imaj oluştururken, bir fotoğraf yaratırken ya da elektronik imaj sensörleri boyunca veri toplarken ışığı odaklar ve toplar.

Geometrik optik veya ışın optiği, ışık yayılmasını ışınlarla açıklar. Geometrik optikte ışın bir soyutlama ya da enstrumandır; ışığın belirli şartlarda yayıldığı yola yaklaşmada kullanışlıdır.

<span class="mw-page-title-main">X ışını mikroskobu</span>

Bir x ışını mikroskobu yumuşak X ışını şeritlerinde elektromanyetik radyasyonu kullanarak objelerin büyütülmüş görüntülerini üretir. X ışınları birçok objenin içinden geçebildiğinden onları gözlemlemek için özellikle hazırlamak gerekmez.

X ışını optiği, optiğin görünen ışık yerine X ışınları kullanılan bir dalıdır. Görünen ışık için lensler kırılma indisi esasen 1’ den büyük olan şeffaf materyalden yapılırken ; X ışınları içinkırılma indisi birden biraz daha küçüktür. X ışınlarını yönetmenin prensip methodları yansıma, kırınım ve girişimden gelir. Uygulama örnekleri X ışını teleskopları ve X ışını mikroskoplarını içerir. Kırınım, bileşik kırınım merceği için bir temeldir, birçok küçük X ışını merceği seriler halinde X ışınlarının kırınım indisi anı numaralarına göre denklenmişlerdir. Kırınım indisinin hayali kısmı da, X ışınlarını yönlendirmek için kullanılabilir. Görünür ışık için de kullanılabilen pim deliği kamerasi buna bir örnektir.

<span class="mw-page-title-main">Tıbbi görüntüleme</span> bir bedenin iç kısmının görsel temsillerini oluşturma tekniği ve süreci

Tıbbi görüntüleme, tıbbi analiz ve müdahale için vücudun iç kısımlarının görsel temsillerini oluşturmak veya bazı organ veya dokuların işlevinin (fizyoloji) görsel tasvirlerini yaratmak için kullanılan teknikler ve işlemlerdir. Tıbbi görüntüleme, cilt ve kemiklerin görüntülenmesine engel olduğu iç yapıları ortaya çıkarmanın yanı sıra, hastalıkları teşhis, muayene ve tedavi etmeyi amaçlar. Tıbbi görüntüleme aynı zamanda anormallikleri tespit etmeyi mümkün kılan normal anatomi ve fizyoloji veritabanını da oluşturur. Vücuttan çıkartılmış organ ve dokuların incelenmesi tıbbi nedenlerle gerçekleştirilse de, bu tür işlemler genellikle tıbbi görüntüleme yerine patolojinin bir parçası olarak kabul edilir.

<span class="mw-page-title-main">Kızılötesi astronomi</span>

Kızılötesi astronomi, kızılötesi radyasyon ile görüntülenebilen astronomik nesnelerin incelendiği astronomi dalıdır. Kızılötesi ışığın dalga boyu 0.75 ile 300 mikrometre arasında değişir. Kızılötesi, 380 ila 750 nanometre arasında değişen görünür radyasyon ile milimetre altı dalgalar arasında yer alır.

<span class="mw-page-title-main">Teleskobun tarihi</span>

Teleskopun tarihi, 1608'de Hollanda'da bir gözlük üreticisi olan Hans Lippershey tarafından bir patent sunulduğunda ortaya çıkan bilinen en eski teleskopun icadından öncesine kadar götürülebilir. Lippershey patentini almamış olsa da, buluşla ilgili haberler kısa sürede Avrupa'ya yayıldı. Bu erken tasarımı kırılmalı teleskoplar bir dışbükey objektif lens ve içbükey mercekten oluşuyordu. Galileo ertesi yıl bu tasarımı geliştirdi ve astronomiye uyguladı. 1611'de Johannes Kepler, bir dışbükey mercek ve bir dışbükey mercek merceği ile çok daha kullanışlı bir teleskopun nasıl yapılabileceğini açıkladı. 1655'e gelindiğinde, Christiaan Huygens gibi gök bilimciler, bileşik göz mercekleri olan güçlü ama hantal Kepler teleskopları inşa ediyorlardı.

Galaktik sırt, Samanyolu'nun galaktik düzlemi ile çakışan iç gökada bölgesidir. Dünya'dan, 'toz şeritleri' ile kesilmiş bir yıldızlar kuşağı olarak görülebilir. Bu 'toz şeritlerinde', gaz halindeki galaktik diskin tozu, arka plandaki yıldızların görünür ışığını engeller. Bu nedenle, Samanyolu'nun en ilginç özelliklerinin birçoğu sadece X-ışınlarında görülebilir. Samanyolu'nu dolduran noktasal X-ışını kaynaklarının yanı sıra, galaktik düzlemde yoğunlaşmış, görünüşte dağınık bir X-ışını emisyonu da gözlemlenmektedir. Buna galaktik sırt X-ışını emisyonu (GRXE) denir. Bu emisyonlar, Diana Worrall ve çalışma arkadaşları tarafından 1982 yılında keşfedilmiş ve o zamandan beri bu emisyonların kökeni dünya çapında astrofizikçileri şaşırtmıştır.