İçeriğe atla

X ışını

1896'da Wilhelm Röntgen tarafından oluşturulan, eşi Anna Bertha'nın elinin X ışını görüntüsü

X ışınları veya Röntgen ışınları, 0,125 ile 125 keV enerji aralığında veya buna karşılık, dalgaboyu 10 ile 0,01 nm aralığında olan elektromanyetik dalgalar veya foton demetidir. 30 ile 30.000 PHz (1015 hertz) aralığındaki titreşim sayısı aralığına eşdeğerdir. X ışınları özellikle tıpta tanısal amaçlarla kullanılmaktadırlar. İyonlaştırıcı radyasyon sınıfına dahil olduklarından zararlı olabilirler. X ışınları 1895'te Wilhelm Conrad Röntgen tarafından Crookes tüpü (Hittorf veya Lenard tüpleri ile de) ile yaptığı deneyler sonucunda keşfedilmiştir.[1][2] Klasik fizik sınırları içinde, X-ışınları aynı görünür ışık gibi bir elektromanyetik dalga olup, görünür ışıktan farkı düşük dalga boyu, dolayısıyla yüksek frekansları ve enerjileridir. Morötesi'nin ötesidir. X Işınlarının ötesi ise Gama ışınları'dır.

Röntgen ışınları ışığa benzeyen fakat gözle görülmeyen, oldukça delici özellikli bir salınımdır. X ışını tabirini (Almanca: X Strahlung, günümüzde Röntgenstrahlung) ilk olarak bu ışınları keşfeden fakat özelliklerini tam bulamayan Wilhelm Conrad Röntgen, “bilinmeyen” anlamında kullanmıştır. Röntgen ışınlarının elektromanyetik radyasyon spektrumunun bir kısmı olduğu, bugün artık bilinmektedir. Bu ışınların dalga boyu 10−9 ile 10−11 cm arasındadır. Dalga boyu gözle görülen ışığınkinden kısadır.

X ışınları elektromanyetik dalga kimliğinde oldukları ve kutuplanma özelliği taşıdığı ilk olarak Charles Glover Barkla (1906) tarafından kanıtlanmıştır. X-ışınları demeti; karbon, alüminyum ve kükürt bloklarından oluşan bir saçıcı ortama gönderilmektedir. Saçıcı ortamın elektronları, üzerine gelen X ışınlarının elektrik alan vektörünün etkisiyle titreşerek aynı frekansta elektromanyetik dalgalar yayınlar. X ışınları xy düzleminde paralel elektrik alan vektörü bulundurur. 0x doğrultusunda saçılmaya başlayan X ışınları yalnızca 0y doğrultusunda titreşen elektrik alan vektörüne sahiptir ve böylelikle kutuplanmıştır.[3]

Tarihçe

8 Kasım 1895'te Alman fizik profesörü Wilhelm Röntgen, Lenard tüpleri ve Crookes tüplerini denerken röntgen ışınlarına tökezledi ve bunları incelemeye başladı. İlk raporunu "Yeni bir ışın türünde: Bir ön iletişim" başlığı altında yazdı ve 28 Aralık 1895'te Würzburg Fiziksel-Tıp Derneği dergisine sundu. Bu, röntgen filmleri üzerine yazılmış ilk makaleydi. Röntgen, radyasyondan bilinmeyen bir radyasyon türü olduğunu belirtmek için "X" olarak bahsetmiştir. İsim sıkışmış olsa da (Röntgen'in büyük itirazları üzerine) birçok meslektaşı onlara Röntgen ışınları demeyi önerdi. Almanca, Macarca, Danca, Lehçe, Bulgarca, İsveççe, Fince, Estonca, Rusça, Japonca, Felemenkçe, Gürcüce, İbranice ve Norveççe de dahil olmak üzere birçok dilde hâlâ bu ışıklardan Röntgen olarak bahsedilmektedir. Röntgen, keşfi için kendisinin ilk Nobel Fizik Ödülü'nü aldı.

Keşfinin çelişkili açıklamaları var, çünkü Röntgen ölümünden sonra laboratuvar notlarını yakmıştı; ancak bu biyografileri muhtemelen yeniden inşa edildi: Röntgen, siyah kartona sarılmış bir Crookes tüpünden katot ışınlarını araştırıyordu. böylece baryumdaki görünür ışık, baryum platinosiyanit ile boyanmış bir flüoresan ekran kullanılarak karışmaz. Yaklaşık 1 metre uzaklıktaki ekrandan hafif yeşil bir parıltı fark etti. Röntgen, tüpten gelen bazı görünmez ışınların ekranın parlamasını sağlamak için kartondan geçtiğini fark etti. Masasındaki kitap ve kağıtlardan da geçebileceklerini buldu. Röntgen kendini bu bilinmeyen ışınları sistematik olarak araştırmaya attı. İlk keşfinden iki ay sonra makalesini yayınladı.

El mit Ringen (Yüzüklü El): Wilhelm Röntgen'in eşinin elindeki ilk "tıbbi" röntgeni 22 Aralık 1895'te çekilmiş ve 1 Ocak 1896'da Freiburg Üniversitesi Fizik Enstitüsü'nden Ludwig Zehnder'e sunulmuştur.

Röntgen, X-ışınları nedeniyle oluşan foğrafik bir plaka üzerinde karısının elinin bir resmini çektiğinde tıbbi kullanımlarını keşfetti. Karısının elinin fotoğrafı, X-ışınları kullanan bir insan vücudu parçasının ilk fotoğrafıydı. Resmi görünce "Ölümümü gördüm" dedi.

Özellikleri

X-ışınları üretmenin bir yolunun şematik gösterimi

X-ışını fotonları atomları iyonize edebilecek ve molekuler bağları kırabilecek enerjiye sahiptir. Bu da X-ışınlarını, canlı dokuya zararlı olan iyonlaştırıcı radyasyon sınıfına sokar. Kısa sürelerde maruz kalınan yüksek dozda X-ışını, radyasyon hastalığına sebep olurken, düşük dozlarda uzun süreler maruz kalınan X-ışınları kanser riskini arttırır. Fakat tıbbi X-ışını görüntülemesinde, faydalar potansiyel zararlara üstün gelir. Ayrıca kullanılan dozlar dikkatlice kontrol edilir.

X-ışınlarını genel olarak yumuşak, gevrek ve sert X-ışınları olarak üç sınıfa ayırmak mümkündür. Yumuşak X-ışınları yaklaşık 100 ile 2000 eV arasında enerjilere sahipken,[4] gevrek X-ışınları 2-8 keV ve sert X-ışınları 8 keV ve yukarısında enerjilere sahiptir (gevrek (ing. tender) X-ışınları terimi bazı kaynaklarda kullanılırken[5] bazı kaynaklarda kullanılmaz. Ayrıca bu enerji aralıkları hakkında üzerinde anlaşılmış kesin bir geçiş bulunmamaktadır). Sert X-ışınları oldukça kalın malzemelerin icinden rahatlıkla geçebilirler. Bu sebeple tıbbi ve güvenlik uygulamalarında sıklıkla kullanılırlar.

X-ışınlarının Madde ile Etkileşimi

Farklı enerjilerdeki X-ışınlarının madde ile etkileşimi farklı şekillerde gerçekleşir. Bunun nedeni de maddelerin kompleks kırılma indislerinin, frekansa (foton enerjisine) ve atomların iyonizasyon enerjilerine bağlı olmasıdır. Kompleks kırılma indisi X-ışınları için şu şekilde tanımlıdır:[5]

,

Burada δ kırılım indisinin reel kısmındaki düşüşü, β ise madde içinden geçerken gerçekleşen şiddet kaybını tanımlar.

X-ışınlarının Oluşumu ve Üretimi

X ışınları, hızla hareket eden elektron akımının hedefteki materyalin atomları ile etkileşimi sonucu oluşur. elektronlar hedefle etkileşime girdiğinde, aniden yavaşlar ve kinetik enerjilerinin %1 x ışınına dönüşür (%99 ısı olarak kaybedilir).[]

X-ışını üretimi için gerekli üç eleman vardır:

1) Elektron kaynağı

2) Elektronların çarpacağı bir hedef

3) Elektronları hızlandıracak bir yol

Kullanım Alanları

Tıp sanayi, medikal görüntülemede kullanılır. Röntgen ışını olarak da bilinir ve radyolojik görüntülemede tanıya yardımcı olarak kullanılır.

Ayrıca tüm havalimanlarında ve tüm alışveriş merkezlerinde güvenlik amacıyla kullanılmaktadır.

Kaynakça

  1. ^ Röntgen, W., Sitzungsberichte der Würzburger Physik-medic, (1895).
  2. ^ Röntgen, W., “On a new kind of rays,” Nature, 53(1369), 274-276 (1896).
  3. ^ MODERN FİZİĞE GİRİŞ Prof. Erol Gündüz ISBN 975_483_162_9 Ege Üniversitesi Basımevi Bornova İzmir
  4. ^ Hecht, E., [Optics 4th Edition] Addison Wesley, (2002).
  5. ^ a b Attwood, D. T., [Soft x-rays and extreme ultraviolet radiation: principles and applications] Cambridge Univ Press, New York(2000).

Ayrıca bakınız

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Elektromanyetik radyasyon</span>

Elektromanyetik radyasyon, elektromanyetik ışınım, elektromanyetik dalga ya da elektromıknatıssal ışın bir vakum veya maddede kendi kendine yayılan dalgalar formunu alan bir olgudur. Elektromanyetik dalgalar, yüklü bir parçacığın ivmeli hareketi sonucu oluşan, birbirine dik elektrik ve manyetik alan bileşeni bulunan ve bu iki alanın oluşturduğu düzleme dik doğrultuda yayılan, yayılmaları için ortam gerekmeyen, boşlukta c ile yayılan enine dalgalardır. Elektromanyetik dalgalar, frekansına göre değişik tiplerde sınıflandırılmıştır. Bu tipler sırasıyla :

Elektromanyetik tayf veya elektromanyetik spektrum (EMS), evrenin herhangi bir yerinde fizik kurallarınca mümkün kılınan tüm elektromanyetik radyasyonu ve farklı ışınım türevlerinin dalga boyları veya frekanslarına göre bu tayftaki rölatif yerlerini ifade eden ölçüt. Herhangi bir cismin elektromanyetik tayfı veya spektrumu, o cisim tarafından çevresine yayılan karakteristik net elektromanyetik radyasyonu tabir eder.

<span class="mw-page-title-main">Radyoloji</span> Tıp dalı

Radyoloji, x ışınları ve diğer görüntüleme yöntemlerinin tıpta tanı ve tedavi amacıyla kullanılmasıdır. Tanı ve tedavi amacıyla kullanılan yöntemlerden bazıları; radyografi, ultrason, bilgisayarlı tomografi (BT), manyetik rezonans görüntüleme (MR), nükleer tıp yöntemleri, pozitron emisyon tomografi (PET), mamografi, floroskopi ve X ışını kullanan diğer bazı yöntemler olarak sıralanabilir. Bu yöntemlerin tanı amacıyla kullanımı, tıbbi görüntüleme ile elde edilen görüntülerden hastalıkların tespitinde yararlanılması şeklinde olurken, tedavi amacıyla kullanımı ise bazı radyolojik belirti ve cerrahi işlemlerin görüntüleme yöntemleri sayesinde daha az zararla yapılmasını sağlamalarıdır. Radyoloji iki ana başlığa ayrılır. Bunlar, "Diagnostik Radyoloji" ve "Radyoterapi" dir. Bazı radyolojik yöntemler aşağıda verilmiştir.

Dalga-parçacık ikililiği teorisi tüm maddelerin yalnızca kütlesi olan bir parçacık değil aynı zamanda da enerji transferi yapan bir dalga olduğunu gösterir. Kuantum mekaniğinin temel konsepti, kuantum düzeyindeki objelerin davranışlarında ‘’parçaçık’’ ve ‘’dalga’’ gibi klasik konseptlerin yetersiz kalmasından dolayı bu teoriyi işaret eder. Standart kuantum yorumları bu paradoksu evrenin temel özelliği olarak açıklarken, alternatif yorumlar bu ikililiği gelişmekte olan, gözlemci üzerinde bulunan çeşitli sınırlamalardan dolayı kaynaklanan ikinci dereceden bir sonuç olarak açıklar. Bu yargı sıkça kullanılan, dalga-parçacık ikililiğinin tamamlayıcılık görüşüne hizmet ettiğini, birinin bu fenomeni bir veya başka bir yoldan görebileceğini ama ikisinin de aynı anda olamayacağını söyleyen Kopenhag yorumu ile açıklamayı hedefler.

<span class="mw-page-title-main">Işık</span> elektromanyetik spektrumun insan gözü tarafından algılanabilen kısmı içindeki elektromanyetik radyasyon

Işık veya görünür ışık, elektromanyetik spektrumun insan gözü tarafından algılanabilen kısmı içindeki elektromanyetik radyasyon. Görünür ışık genellikle 400-700 nanometre (nm) aralığında ya da kızılötesi ve morötesi arasında 4.00 × 10−7 ile 7.00 × 10−7 m dalga boyları olarak tanımlanır. Bu dalga boyu yaklaşık 430-750 terahertz (THz) frekans aralığı anlamına gelir.

<span class="mw-page-title-main">Wilhelm Röntgen</span>

Wilhelm Conrad Röntgen, Alman fizikçi. Nobel Fizik Ödülü sahibi olup, Röntgen ışınlarını bulmuştur.

Fotoelektrik etki ya da fotoemisyon, ışık bir maddeyi aydınlattığında elektronların ya da diğer serbest taşıyıcıların ortaya çıkmasıdır. Bu bağlamda ortaya çıkan elektronlar, fotoelektronlar olarak adlandırılır. Bu olay genellikle elektronik fiziğinde hatta kuantum kimyası ya da elektrokimya gibi alanlarda çalışılır.

<span class="mw-page-title-main">Arthur Compton</span> Amerikalı fizikçi (1892 – 1962)

Arthur Holly Compton, 1927'de elektromanyetik radyasyonun parçacık doğasını gösteren Compton etkisinin keşfi ile Nobel Fizik Ödülü kazanmış Amerikalı fizikçidir. Zamanında çok dikkat çeken bir buluştur. Işığın dalga doğası o zamanlarda iyi anlaşılmış olsa da ışığın hem dalga hem parçacık olabileceği fikri kolay kabul görmemiştir. Kendisi ayrıca Manhattan Projesindeki Metallurji Laboratuvarının başı ve 1945 ile 1953 seneleri arasında St. Louis Washington Üniversitesi Rektörüdür.

<span class="mw-page-title-main">Tomografi</span> Penetran dalga kullanarak kesit veya kesit alma yoluyla görüntüleme

Tomografi, radyolojik teşhis yöntemidir. 1915 yılında Fransız hekim Boccage tarafından icat edilmiştir. Fakat kullanıma geçilmesi 1930'ları bulur.

<span class="mw-page-title-main">Parçacık hızlandırıcı</span>

Parçacık hızlandırıcı, yüklü parçacıkları yüksek hızlara çıkarmak ve demet halinde bir arada tutmak için elektromanyetik alanları kullanan araçların genel adıdır. Büyük hızlandırıcılar parçacık fiziğinde çarpıştırıcılar olarak bilinirler. Diğer tip parçacık hızlandırıcılar, kanser hastalıklarında parçacık tedavisi, yoğun madde fiziği çalışmalarında senkrotron ışık kaynağı olmaları gibi birçok farklı uygulamalarda kullanılır. Şu an dünya çapında faaliyette olan 30.000'den fazla hızlandırıcı bulunmaktadır.

<span class="mw-page-title-main">Gama ışını</span> elektromanyetik bir rasyasyon (ışıma) türü

Gama ışını veya gama ışıması, atom altı parçacıkların etkileşiminden kaynaklanan, belirli bir titreşim sayısına sahip elektromanyetik ışınımdır; genelde uzayda gerçekleşen çekirdeksel tepkimelerin sonucunda üretilirler. X ışınlarının ötesinde yer alırlar.

<span class="mw-page-title-main">Radyo dalgaları</span> Radyo Dalgaları (Radio Waves)

Radyo dalgaları, radyo frekansı ile gerçekleşen elektromanyetik dalgalardır. Tel gibi somut bağlantılar kullanmadan, atmosfer içerisinde veri taşınmasına olanak tanırlar. Radyo dalgalarını diğer elektromanyetik dalgalardan ayıran özellikleri görece uzun dalgaboylarıdır.

<span class="mw-page-title-main">Philipp Lenard</span> Alman fizikçi (1862 – 1947)

Philipp Eduard Anton von Lenard, 1905'te katot ışınları ve özellikleri araştırmasıyla Nobel Fizik Ödülü almış Alman fizikçidir. Kendisi milliyetçi ve Yahudi aleyhtarı; aktif bir Nazi ideoloji savunucusudur. 1920'lerde Adolf Hitler'i desteklemiş ve Nazi döneminde “Deutsche Physik” hareketinde önemli bir rol-model olmuştur.

<span class="mw-page-title-main">Crookes tüpü</span>

Crookes tüpü, William Crookes ve arkadaşlarının 1869-1875 yılları arasında icat ettiği eski bir elektrikli gaz tüpüdür. Tüp, elektronların neden olduğu katot ışınlarının keşfedilmesini sağlayan deneyde kullanılmasıyla bilinmektedir.

<span class="mw-page-title-main">Radyasyon</span> Uzayda hareket eden dalgalar veya parçacıklar

Radyasyon veya ışınım, elektromanyetik dalgalar veya parçacıklar biçimindeki enerji yayımı ya da aktarımıdır. "Radyoaktif maddelerin alfa, beta, gama gibi ışınları yaymasına" veya "Uzayda yayılan herhangi bir elektromanyetik ışını meydana getiren unsurların tamamına" da radyasyon denir. Bir maddenin atom çekirdeğindeki nötronların sayısı, proton sayısına göre oldukça fazla veya oldukça az ise; bu tür maddeler kararsız bir yapı göstermekte ve çekirdeğindeki nötronlar alfa, beta, gama gibi çeşitli ışınlar yaymak suretiyle parçalanmaktadırlar. Çevresine bu şekilde ışın saçarak parçalanan maddelere radyoaktif madde denir.

de Broglie hipotezini doğrulayan fizik deneyi, Davisson-Germer deneyi, Amerikalı fizikçi olan Clinton Davisson ve Lester Germer tarafından 1923-1927 yılları arasında yapıldı. Bu hipotez Louis de Broglie tarafından 1924 yılında ortaya konulmuştur ve hipoteze göre elektron gibi maddenin parçacıklarında dalga tipi bir özellik vardır. Bu deney ise sadece de Broglie hipotezini onaylama ve dalga-parçacık ikilisini sunmakla kalmayıp aynı zamanda kuantum mekaniğine ve Schrödinger denklemi için önemli bir tarihi gelişmedir.

<span class="mw-page-title-main">İyonlaştırıcı olmayan radyasyon</span> Düşük frekanslı radyasyon

İyonlaştırıcı olmayan radyasyon, bir atomdan veya molekülden bir elektronu tamamen koparabilmek için atomları veya molekülleri iyonlaştırabilecek yeterli enerji taşıyan kuantumlara sahip olmayan herhangi bir elektromanyetik radyasyon türüdür. Elektromanyetik radyasyon, maddenin içinden geçerken yüklü iyonlar üretmez. Yalnızca, bir elektronu daha yüksek enerji seviyesine çıkaran uyarım için yeterli enerjiye sahiptir. İyonlaştırıcı olmayan radyasyondan daha yüksek bir frekansa ve daha kısa dalga boyuna sahip olan iyonlaştırıcı radyasyon birçok kullanım alanına sahiptir, ancak sağlık için bir tehdit olabilir. İyonlaştırıcı radyasyona maruz kalmak yanıklara, radyasyon hastalıklarına, kansere ve genetik hastalıklara sebep olabilir. İyonlaştırıcı radyasyon kullanmak, iyonlaştırıcı olmayan radyasyon kullanılırken genelde gerekli olmayan dikkatli ve özenle alınmış radyolojik korunma önlemleri gerektirir.

<span class="mw-page-title-main">İyonlaştırıcı radyasyon</span> Zararlı yüksek frekanslı radyasyon

İyonlaştırıcı radyasyon ya da İyonize edici radyasyon, iyonlaşabilen atomlardan veya iyonlaşabilen moleküllerden elektron koparmak için yeterli enerji taşıyan kuantumlara sahip olan herhangi bir elektromanyetik radyasyon türüdür.

<span class="mw-page-title-main">X ışını kristalografisi</span> bir kristalin atomik veya moleküler yapısını belirlemek için kullanılan, sıralanmış atomların gelen X-ışınları demetinin belirli yönlere kırılmasına neden olduğu teknik

X ışını kristalografisi bir kristalin atomik ve moleküler yapısını incelemek için kullanılan ve kristalleşmiş atomların bir X-ışını demetindeki ışınların kristale özel çeşitli yönlerde kırınımı olayına dayanan, bir yöntemdir. Kırınıma uğrayan bu demetlerin açılarını ve genliklerini ölçerek bir kristalografi uzmanı kristaldeki elektronların yoğunluğunun üç boyutlu bir görüntüsünü elde edebilir. Bu elektron yoğunluğundan kristaldeki atomların kimyasal bağları, kristal yapıdaki düzensizlikler ve bazı başka bilgilerle birlikte ortalama konumları tespit edilebilir.

Kimyasal elementlerin ya da kimyasal bileşiklerin emisyon spektrumu atom ya da moleküllerin yüksek enerji seviyesinden düşük enerji seviyesine geçişinden elde edilen elektromanyetik radyasyonun frekans spektrumudur. Yayılmış fotonun enerjisi iki enerji düzeyi arasındaki farka eşittir. Her atom için birçok mümkün geçişler vardır ve enerji düzeyleri arasındaki her geçiş spesifik enerji farkına sahiptir. Bu farklı geçişlerin toplamı, farklı ışınlar halinde gönderilmiş dalga boylarına ve emisyon spektrumunun düzenlenmesine neden olur. Her elementin emisyon spektrumu özeldir. Dahası, spektroskopi elementlerin madde içindeki bilinmeyen kompozisyonunu tespit etmek için kullanılabilir. Buna benzer olarak, moleküllerin emisyon spektrumları maddelerin kimyasal analizlerinde kullanılabilir.