İçeriğe atla

Wheeler-Feynman soğurucu teorisi

Wheeler–Feynman soğurucu teorisi (Wheeler–Feynman Zaman-Simetrik Teorisi) elektromanyetik alan denklemlerinin, alan denklemleri olmalarından dolay, zaman evritimi altında simetrik olmaları gerektiği fikriyle doğmuştur. Bu aksiyomun fiziğin kendi içinde var olan simetriden kaynaklanıyor. Aslında görünürde bu tarz bir simetrinin kırılıp da bir yönün diğerlerine göre daha üstün olmasına sebep olabilecek bir sebep yoktur. Böylece bu simetriyi göz önüne alan bir teori bir zaman yönelimini diğerine tercih eden teoriler arasında daha seçkin bir özelliğe sahiptir. Burada Mach prensibini andıran bir başka anahtar fikir ise elementer bir parçacığın bir başka elementer parçak üzerine doğrudan etkiyemeyeceğidir. Bu kendiliğinden öz enerji problemini ortadan kaldırır. Bu teori kendisini kuran kişilerin, Richard Feynman ve John Archibald Wheeler adını almıştır.

Nedensellik problemi

Zaman-simetrik bir teori oluşturmak isteyen kimsenin karşılaşacağı ilk problem nedensellik (sebep sonuç) problemidir. Maxwell denklemlerinin veya bir başka dalga denkleminin genel olarak iki çözümü vardır: gecikmeli çözüm ve ileri çözüm. Bu da demektir ki eğer elimizde zamanında ve noktasında eketromanyetik dalga yayan veya soğuran bir nesne varsa, o zaman ilk (gecikmeli) çözüm noktasına dalganın yayılmasından veya soğurulmasından kadar süre sonra varırken, ikinci (ileri) çözüm aynı noktaya süre kadar önce varır. İkinci dalga fiziksel olarak bariz bir şekilde fiziksel bir olayın olmasından önce gözlemleyebileceği şeklinde yorumlanabileceğinden elektromanyetik dalgaların yorumlanması sürecinde göz ardı edilir. Soğurma teorisinde, kaynaktan soğurucuya giden gecikmeli dalga ve soğurucudan kaynağa gelen ileri dalga ışık enerjisinin normal biçimde hareketine karşılık gelir ve nedensel olmayan yöndeki hareket dışlanmaz. Feynman ve Wheeler bu güçlüğün üstesinden basit bir şekilde geldiler. Evrendeki tüm yayıcı kaynakları düşünelim. Öyle ki hepsi simetrik bir şekilde elektromanyetik dalga oluştursunlar. Bu durumdan kaynaklanan alan

Eğer evrende bu denklemin sağlandığını varsayarsak

bu son terimi serbestçe Maxwell denklemlerine ekleyebiliriz (homojen Maxwell denkleminin çözümü) ve sonuç olarak

Bu şekilde model gecikmeli alanın etkisini görür ve nedensellik bozulmaz. Bu serbest alanın varlığı evrendeki her parçacığın diğer her bir parçacık tarafından yayılan ışımayı soğurması ile doğrudan ilgilidir. Yine de teorinin altında yatan fikir tıpkı elektromanyetik bir dalganın bir cisim tarafından soğrulması kadar basittir; mikroskopik ölçekte baktığımızda görürüz ki soğrulma dışarıdan gelen herhangi bir pertürbasyona karşı elektronların tepkisine karşılık gelen elektromanyetik alanların varlığından kaynaklanır ve bunu sönümleyici alanlar yaratır. Buradaki temel fark aynı sürecin ileri dalgalarda da gerçekleşmesine izin verilmesidir. Sonuç olarak bu teorinin gecikmeli zaman yönünün seçimli olduğunu öne süren bir teoriden daha fazla simetrik olmadığı öne sürülebilir. Ancak yayıcı ve soğurucuyu her zaman değiştirebileceğinizden bu çıkarım yanılsamadan öteye gidemeyecektir. Zaman yönelimindeki herhangi bir seçim yayıcı ve soğurucuların rastgele belirlenmesiyle ortaya çıkar.

Nedensellik sorununun çözülmesi

T.C. Scott ve R.A. Moore gösterdi ki kendi orijinal formülasyonlarındaki ileri Liénard–Wiechert potansiyellerinden kaynaklanan görünürdeki nedensellik bozulumu teoriyi gecikmeli potansiyeller cinsinden tam relativistik çok cisimli elektrodinamik formülasyonuna getirdiklerinde ortadan kalkabilir.[1][2]

2. parçacık tarafından oluşturulan zaman-simetrik alanların 1. Parçacık ile etkileşmesinden kaynaklanan Lagrangian

burada i parçacığının relativistik kinetik enerjisi ve ve sırasıyla j parçacığı üzerine etkiyen gecikmeli ve ileri Liénard–Wiechert potansiyelleri olsun. Aynı şekilde 2. Parçacığın hareketine denk gelen Lagrangian:

Bu durum tarihsel olarak önce deneysel matematik ile gösterilmiş[3] sonra matematiksel olarak kanıtlanmıştır ki[4] i parçacığının j parçacığı üzerine etkiyen gecikmeli potansiyeli ile j parçacığının i parçacığı üzerine etkiyen ileri potansiyeli arasındaki fark basitçe zaman türevine eşittir:

veya Euler-Lagrange denklemlerine katkı getirmediğinden bir diverjansa eşittir. Böylece Lagrangian a yeteri kadar tam zaman türevi ekleyerek ileri potansiyeller elimine edilebilir. Dolayısıyla N-cisim sistem için Lagrangian:

burada iler potansiyeller bir katkı getirmez. Dahası bu Lagrangian parçacık-parçacık simetrisi gösterir. Dahası için bu Lagrangian ve nin ürettiği hareket denklemlerinin aynılarını üretir ve böylece problemin fiziği değişmemiş olur. Böylece dışarıdan relativistikn-cisim problemini gözlemleyen gözlemci için, her olay nedenseldir. Öte yandan eğer bir cisim üzerinde etki eden kuvvetleri diğerlerinden ayırırsak ileri potansiyeller karşımıza çıkar. Tabii ki problemin bu açıdan ele alınmasının da bir bedeli vardır: N-cisim Lagrangian ı parçacıkların izledikleri yollardaki tüm zaman türevlerine bağlı çıkar, diğer bir deyişle Larangian'ın derecesi sonsuz olur. Yine de genelleştirilmiş momentum ve parçacık değişimleri altındaki simetri korunmuş olur. Lokal görünmeyen bir başka özellik de Hamilton prensibinin çok parçacıklı relativistik bir sisteme bir bütün olarak uygulanmasıdır ki herhangi biri klasik bir teori ile bundan daha ileri gidemez. Öte yandan teorinin kuantizasyonunda oldukça önemli gelişmeler kaydedilmiştir.[5][6]

Klasik problemin sayısal çözümleri de bulunmuştur.[7] Ayrıca bu formülasyonun Breit denkleminden çıkarışmış Darwin LagrangianInı da kapsadığına dikkat edin. Bu teorinin Lamb kayması dahil edilmediğinde deney ile uyum içerisinde olduğunu gösteriyor.

Öz-etkileşim ve sönüm problemi

Elektromanyetik etkişelimler için farklı açıklamalar bulma isteği en temelde elektromanyetik ışıma sürecine tutarlı bir açıklama getirme isteğinden kaynaklanır. Buradaki önemli nokta şudur: düzgün hareket etmeyen bir cisim düşünelim (örneğin titreşen bir cisim ), o halde bu parçacık ışıma yapacak ve enerji kaybedecektir. Bu problemin ilk çözümü Lorentz tarafından yapılmış ve Dirac tarafından genişletilmiştir. Lorentz bu enerji kaybını parçacığın kendi alanıyla olan gecikmeli etkileşiminine bağlamıştır. Bu gibi bir yaklaşım teoridie ıraksaklıklara neden olacağından parçacığın yük dağılımı üzerindeki varsayımların geliştirilmesi gerekir. Dirac Lorentz tarafından verilen formülü sönüm terimi için genelleştirerek onu relativistik olarak değişmez hale getirmiştir. Böyle yaparken, sönüm çarpanına da parçacığın bulunduğu noktadaki diğer serbest alanlarla etkileşimi şeklinde bir açıklama getirmiştir.

Bu formuldeki temel eksiklik bu serbest alanlarla ilgili fiziksel çıkarımın yoksunluğudur.

Dolayısıyla soğurucu teorisi bu noktayı düzeltmek için formüle edildi. Soğurucu teorisine göre eğer her parçacığın kendisiyle etkileşmediğini kabul eder ve parçacığı üzerine etkiyen alanı hesaplamaya çalışırsak

Eğer bu alana serbest alanları eklersek

sonuç olarak

ve

Bu yorum Dirac denklemine fiziksel bir yorum getirerek bir parçacığın öz-etkileşiminden kaynaklanacak olan ıraksaklıklardan kaçınıyor. Moore ve Scott[1] gösterdi ki ışıma tepkisi, ortalamada sonlu sayıda yüklü parçacığın toplam net dipol momentinin sıfır olduğu düşünüldüğünde farklı bir yolla da çıkarılabilir.

Sonuç

Yine de sönüm alanları konusunda problemler çözümsüz kalıyor. Klasik limitte yazıldığında:

Zamana göre üçüncü türevler göründüğünden, oldukça açıktır ki denklemi çözmek için başlangıç hızı ve konumunun yanında parçacığın ivmesinin de bilinmesi gerekir ki bu oldukça anlamsızdır. Bu problem hareket denklemlerinin o parçacığın oluşturduğu alanlar için yazılmış maxwell denklemleriyle beraber çözülmesi gerektiği anlaşıldığında çözülmüştür. Bu nedenle denklemleri çözmek için başlangıç ivmesi yerine başlangıçtaki alanın ve sınır koşullarının verilmesi yeterlidir. Böylece teori fiziksel olarak yorumlanabilme açısından tutarlı hale gelir. Yine de denklemler çözülüp fiziksel olarak yorumlanmak istendiğinde sorunlar çıkabilir. Genel kanı Maxwell denklemlerinin klasik yapısından ötürü öz-etkileşim gibi quantum mekaniksel etkileşimler için geliştirilmeksizin kullanılamayacağı yönündedir. Yine de Wheeler ve Feynman teoriye klasik bir yaklaşım üretebildiler.

Bu makaleyi formüle ettikleri zaman Wheeler ve Feynman bu ıraksak terimden kurtulmaya çalışıyorlardı. Daha sonraları, Lamb kayması için kuantum mekaniği sınırları dahilinde cisimlerin kendileri ile etkileşimlerinin gerekliliğinin kaçınılmaz olduğunu belirtti. Bu durum daha sonraları bilim adamlarını quantum mekaniği çalışırken Hamilton prensibinden ziyade Lagrangian kullanmaya yönetlmiştir.

Son olarak Wheeler tüm süper galaksi kümeleri arasındaki uzayın genişlediğini öngören genişlemenin termodinamik teorisini veya diğer adıyla evrenin genişlemesini kabul etti. Bu aynı zamanda doğadaki bir asimetri olup elektromanyetik gecikmeli dalgaların da kökenini oluşturur [7].

Önemli makaleler

Ayrıca bakınız

  • Yayılıcılar
  • The Feynman Lectures on Physics (Vol. II - chap. 28)

Kaynakça

  1. ^ a b Moore, R. A.; Scott, T. C.; Monagan, M. B. (1987). "Relativistic, many-particle Lagrangean for electromagnetic interactions". Phys. Rev. Lett. 59 (5). ss. 525-527. Bibcode:1987PhRvL..59..525M. doi:10.1103/PhysRevLett.59.525. )
  2. ^ Moore, R. A.; Scott, T. C.; Monagan, M. B. (1988). "A Model for a Relativistic Many-Particle Lagrangian with Electromagnetic Interactions". Can. J. Phys. 66 (3). ss. 206-211. Bibcode:1988CaJPh..66..206M. doi:10.1139/p88-032. 
  3. ^ Scott, T. C.; Moore, R. A.; Monagan, M. B. (1989). "Resolution of Many Particle Electrodynamics by Symbolic Manipulation". Comput. Phys. Commun. 52 (2). ss. 261-281. Bibcode:1989CoPhC..52..261S. doi:10.1016/0010-4655(89)90009-X. 
  4. ^ Scott, T. C. (1986). "Relativistic Classical and Quantum Mechanical Treatment of the Two-body Problem". MMath thesis. U. of Waterloo, Canada. 
  5. ^ Scott, T. C.; Moore, R. A. (1989). "Quantization of Hamiltonians from High-Order Lagrangians". Nuclear Physics. Univ. of Maryland. 6 (Proc. Suppl.): 455-457. Bibcode:1989NuPhS...6..455S. doi:10.1016/0920-5632(89)90498-2. 
  6. ^ Moore, R. A.; Scott, T. C. (1991). "Quantization of Second-Order Lagrangians: Model Problem". Phys. Rev. A. 44 (3). ss. 1477-1484. Bibcode:1991PhRvA..44.1477M. doi:10.1103/PhysRevA.44.1477. 
  7. ^ Moore, R. A.; Qi, D.; Scott, T. C. (1992). "Causality of Relativistic Many-Particle Classical Dynamics Theories". Can. J. Phys. 70 (9). ss. 772-781. Bibcode:1992CaJPh..70..772M. doi:10.1139/p92-122. 

7. Benjamin Gal-Or, “Cosmology, Physics and Philosophy”, p. (iii), Springer Verlag, 1987, ISBN 0-387-90581-2, ISBN 0387965262.

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Maxwell denklemleri</span>

Maxwell denklemleri Lorentz kuvveti yasası ile birlikte klasik elektrodinamik, klasik optik ve elektrik devrelerine kaynak oluşturan bir dizi kısmi türevli (diferansiyel) denklemlerden oluşur. Bu alanlar modern elektrik ve haberleşme teknolojilerinin temelini oluşturmaktadır. Maxwell denklemleri elektrik ve manyetik alanların birbirileri, yükler ve akımlar tarafından nasıl değiştirildiği ve üretildiğini açıklamaktadır. Bu denklemler sonra İskoç fizikçi ve matematikçi olan ve 1861-1862 yıllarında bu denklemlerin ilk biçimini yayımlayan James Clerk Maxwell' in ismi ile adlandırılmıştır.

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

<span class="mw-page-title-main">Kinetik enerji</span> bir cismin harekiyle oluşan enerji

Kinetik enerji, fiziksel bir cismin hareketinden dolayı sahip olduğu enerjidir.

<span class="mw-page-title-main">Açısal momentum</span> Fiziksel nicelik

Açısal momentum, herhangi bir cismin dönüş hareketine devam etme isteğinin bir göstergesidir ve bu nicelik cismin kütlesine, şekline ve hızına bağlıdır. Açısal momentum bir vektör birimidir ve cismin belirli eksenler üzerinde sahip olduğu dönüş eylemsizliği ile dönüş hızını ifade eder.

<span class="mw-page-title-main">Elektrik alanı</span>

Elektriksel alan, kıvıl alan, elektrik alan veya elektrik alanı, elektriksel yükü veya manyetik alanı çevreleyen uzayın bir özelliği olup, içerisinde bulunan yüklü nesnelere elektriksel güç aracılığı ile etki eder. Kavram fiziğe Michael Faraday tarafından kazandırılmıştır.

<span class="mw-page-title-main">İş (fizik)</span>

Fizikte, bir kuvvet bir cisim üzerine etki ettiğinde ve kuvvetin uygulama yönünde konum değişikliği olduğunda iş yaptığı söylenir. Örneğin, bir valizi yerden kaldırdığınızda, valiz üzerine yapılan iş kaldırıldığı yükseklik süresince ağırlığını kaldırmak için aldığı kuvvettir.

<span class="mw-page-title-main">Katı cisim dinamiği</span>

Katı-cisim dinamiği, dış kaynaklı kuvvetler karşısında hareket eden birbiri ile ilişkili sistemlerin analizini inceler. Her bir gövde için, cisimlerin katı olduğu ve bu nedenle uygulanan kuvvetler nedeni ile deforme olmadıkları, sistemi tanımlayan taşıma ve dönme parametrelerinin sayısını azaltarak analizi basitleştirmektedir.

Lorentz kuvveti, fizikte, özellikle elektromanyetizmada, elektromanyetik alanların noktasal yük üzerinde oluşturduğu elektrik ve manyetik kuvvetlerin bileşkesidir. Eğer q yük içeren bir parçacık bir elektriksel E ve B manyetik alanın var olduğu bir ortamda v hızında ilerliyor ise bir kuvvet hissedecektir. Oluşturulan herhangi bir kuvvet için, bir de reaktif kuvvet vardır. Manyetik alan için reaktif kuvvet anlamlı olmayabilir, fakat her durumda dikkate alınmalıdır.

<span class="mw-page-title-main">Fourier serisi</span>

Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.

<span class="mw-page-title-main">Klasik elektromanyetizma</span>

Klasik elektromanyetizm, klasik elektromıknatıslık ya da klasik elektrodinamik teorik fiziğin elektrik akımı ve elektriksel yükler arasındaki kuvvetlerin sonuçlarını inceleyen dalıdır. kuantum mekaniksel etkilerin ihmal edilebilir derecede küçük olmasını sağlayacak kadar büyük ölçütlü sistemler için elektromanyetik fenomenlerin mükemmel bir açıklamasını sunar.

<span class="mw-page-title-main">Liénard-Wiechert potansiyelleri</span>

Liénard-Wiechert potansiyelleri yüklü bir noktasal parçacığın hareketi esnasında oluşan klasik elektromanyetik etkiyi bir vektör potansiyeli ve bir skaler potansiyel cinsinden ifade eder. Maxwell denklemlerinin doğrudan bir sonucu olarak bu potansiyel relativistik olarak doğru, tam, zamana bağlı etkileri de içeren, noktasal parçacığın hareketine herhangi bir sınır konulmaksızın en genel durum için geçerli olan fakat kuantum mekaniğinin öngördüğü etkileri açıklayamayan elektromanyetik bir alan tanımlar. Dalga hareketi formunda yayılan elektromanyetik ışıma bu potansiyellerden elde edilebilir.

Ewald toplamı, ismini Paul Peter Ewald'dan alır, periyodik sistemlerin, özellikle elektrostatik enerjilerin, etkileşim enerjilerini hesaplayan bir yöntemdir. Ewald toplamı Poisson toplam formülünde gerçek uzaydaki etkileşim enerjilerinin Fourier uzayındaki denk bir toplam ile değiştirilmiş toplam formülünün özel bir halidir. Bu yöntemin avantajı gerçek uzaydaki etkileşimler uzun mesafeli olduğunda Fourier uzayındaki toplamın hızlı yakınsıyor olmasıdır. Elektrostatik enerjiler kısa ve uzun mesafeli etkileşimlerden oluştukları için en verimli hesaplama etkileşim potansiyeli gerçek uzayda kısa mesafeli etkileşim toplamı ve Fourier uzayında uzun mesafeli etkileşim toplamı olarak iki parçaya ayrıldığında gerçekleşir.

<span class="mw-page-title-main">Feynman diyagramı</span> parçacıklar bozunum geçirdiğinde veya diğer parçacıklarla etkileşime girdiğinde en temel düzeyde ne olduğunu gösteren uzay zaman şeması

Teorik fizikte Feynman diagramları, bir Feynman diyagramının davranışını düzenleyen matematiksel ifadelerin resimsel sunumlar katılarak diyagram tarafından açıklandığı gibi atomaltı parçacıklarların davranışları gösterilmiştir. Bu şemalar bunları bulan adınadır, Amerikan fizikçisi Richard Feynman Nobel Ödülü kazandı ve 1948 yılında tanıttı. Atomaltı parçacıkların ilişkileri sezgisel anlamak karışık ve zor olabilir ve Feynman diagramları oldukça gizemli soyut formülün basit bir gösterimine izin verir. David Kaiser yazdı ki, "yüzyılın ortasından bu yana, bu diagramlar teorik fizikçiler için giderek zorlaşan kritik hesaplamalar uygulamasına yardım araçlarıdır," ve "Feynman diagramları Teorik fizikte her yönüyle neredeyse devrimdir.". kuantum alan teorisi diyagramların ilk uygulamasıdır, ayrıca, katı-hal teorisi gibi diğer alanlardada kullanılabilir.

18. yy. ve sonrasında geliştirilmiş, genellikle vektörel mekanik olarak nitelendirilen ve orijinalinde Newton mekaniği olarak bilinen analitik mekanik, klasik mekaniğin matematiksel fizik kaynaklarıdır. Model harekete göre analitik mekanik, Newton’un vektörel enerjisinin yerine, hareketin iki skaler özelliği olan kinetik enerjiyi ve potansiyel enerjiyi kullanır. Bir vektör, yön ve nicelik ile temsil edilirken bir skaler, nicelik ile(yoğunluğu belirtirken) temsil edilir. Özellikle Lagrange mekaniği ve Hamilton mekaniği gibi analitik mekanik de, sorunları çözmek için bir sistemin kısıtlamalarının ve tamamlayıcı yollarının kavramını kullanarak klasik mekaniğin kullanım alanını etkili bir şekilde yapılandırır. Schrödinger, Dirac, Heisenberg ve Feynman gibi kuram fizikçileri bu kavramları kullanarak kuantum fiziğini ve onun alt başlığı olan kuantum alan teorisini geliştirdiler. Uygulamalar ve eklemelerle, Einstein’a ait kaos teorisine ve izafiyet teorisine ulaşmışlardır. Analitik mekaniğin çok bilindik bir sonucu, modern teorik fiziğin çoğunu kaplayan Noether teoremidir.

Matematiksel fizikte, hareket denklemleri, fiziksel sistemin hareket sürecindeki davranışını, zamanın bir fonksiyonu olarak tanımlar. Daha detaya girmek gerekirse; hareket denklemleri, fiziksel sistemin davranışını devinimsel değişkenler üzerinde tanımlanmış bir matematiksel fonksiyon takımı olarak izah eder. Bu değişkenler genellikle uzay koordinatları ve zamandan ibarettir, ama gerektiğinde momentum bileşenleri de kullanılır. En yaygın değişken seçeneği, fiziksel sistemin özelliklerini uygun şekilde tanımlayan değişkenlerden oluşan genelleştirilmiş koordinatlardır. Klasik mekanikte bu fonksiyonlar öklid uzayında tanımlanmıştır ama görelilikte eğilmiş uzay üzerindeki fonksiyon daha uygundur. Eğer sistemin dinamikleri biliniyor ise, bu fonksiyonları tanımlayan denklemler dinamiğin hareketini izah eden diferansiyel denklemlerin çözümleri olacaktır.

<span class="mw-page-title-main">Lagrange mekaniği</span> Klasik mekaniğin yeniden formüle edilmesi

Lagrange mekaniği, klasik mekaniğin yeniden formüle edilmesidir. İtalyan-Fransız matematikçi ve astronom Joseph-Louis Lagrange tarafından 1788’de geliştirilmiştir.

Breit denklemi, Gregory Breit tarafından 1929'da Dirac denklemine dayalı olarak türetilmiş kökler kuralının ilk kuralına göre iki ya da daha fazla kütleli spini -1/2 olan parçacıkların elektromanyetizma açısından etkileşimini tanımlayan rölativistik dalga denklemidir. Manyetik etkileşimlerin ve  kuralına göre gecikme etkisinin nedeni açıklar. Diğer kuantum elektrodinamik etkileri ihmal edildiğinde, bu denklemin deney ile iyi bir uyum içinde olduğu görülmüştür. Bu denklem başlangıçta Darwin Lagrangian tarafından türetildi ancak daha sonra Wheeler-Feynman emme teorisi ve en sonunda kuantum elektrodinamiği tarafından doğrulandı.

Hamilton mekaniği klasik mekaniğin tekrar formüle edilmesiyle geliştirilmiş ve Hamilton olmayan klasik mekanik ile aynı sonuçları öngörmüş bir teoridir. Teoriye daha soyut bir bakış açısı kazandıran Hamilton mekaniği klasik mekaniğe kıyasla farklı bir matematiksel formülasyon kullanmaktadır. Tarihi açıdan önemli bir çalışma olan Hamilton mekaniği ileriki yıllarda istatistiksel mekanik ve kuantum mekaniği konularının da geliştirilmesine önemli katkılarda bulunmuştur.

Fizikte Einstein ilişkisi; 1904'te William Sutherland'in, 1905'te Albert Einstein'ın ve 1906'da Marian Smoluchowski'nin Brown hareketi üzerine yaptıkları çalışmalarında bağımsız olarak ortaya koydukları önceden beklenmedik bir bağlantıdır. Denklemin daha genel biçimi:

Wheeler-Feynman emme teorisi, adını yaratıcıları olan fizikçiler Richard Feynman ve John Archibald Wheeler'dan alan Wheeler-Feynman soğurucu teorisi, elektromanyetik alan denklemlerinin çözümlerinin şu varsayımdan türetilmiş bir elektrodinamiğin yorumudur: alan denklemlerinin kendileri gibi, zaman-ters dönüşüm altında değişmez olmalıdır. Gerçekten de, tercihli bir zaman yönünü öne çıkaran ve böylece geçmiş ile gelecek arasında bir ayrım yapan, zaman-ters simetrisinin kırılması için görünürde bir neden yoktur. Zamanın tersine çevrilmesiyle değişmeyen bir teori daha mantıklı ve zariftir. Bu yorumdan kaynaklanan ve Mach'ın Hugo Tetrode'a bağlı ilkesini hatırlatan bir diğer temel ilke, temel parçacıkların kendi kendine etkileşmediğidir. Bu, öz enerji sorununu hemen ortadan kaldırır.