İçeriğe atla

Welch'in t-testi

İstatistikte, Welch'in t-testi veya eşit olmayan varyanslar t-testi, iki popülasyonun eşit ortalamalara sahip olduğu hipotezini test etmek için kullanılan iki örneklemli bir konum testidir. Welch'in t-testi, Student'ın t-testinin uyarlanmasıdır,[1] Yani, Student'ın t testi yardımıyla türetilmiştir ve iki numunenin eşitsiz varyanslara ve eşit olmayan örneklem boyutlarına sahip olması durumunda daha güvenilirdir.[2] Bu testlere, genellikle, karşılaştırılan iki numunenin altında yatan istatistiksel birimler çakışmaz olduğunda tipik olarak uygulandığı için "eşleştirilmemiş" veya "bağımsız örnekler" "t" testleri olarak adlandırılır.Welch'in t-testinin Student'ın t-testinden[2] daha az popüler olduğu ve okuyuculara daha az tanıdığı göz önüne alındığında, kısaca "Welch'in eşitsiz varyans t-testi" veya "eşitsiz varyans t -testi" daha bilgilendirici bir addır.

Varsayımlar

Student'ın t-testi, iki popülasyonun normal dağılımlara ve eşit varyansa sahip olduğunu varsayar. Welch'in t- testi, eşit olmayan varyanslar için tasarlanmıştır, ancak normalite varsayımı korunmaktadır.[1] Welch'in t-testi, Behrens-Fisher problemi için yaklaşık bir çözümdür.

Aspin ve Welch gibi bazı yazarlar, Welch istatistiklerinde serbestlik derecelerini (df) elde etmek için yöntemler sundular. Keselman ve ark., formüllerin hiçbiri kesinlikle doğru df sağlamaz ve bu nedenle yaklaşık df (ADF) olarak adlandırılırlar. Yaygın olarak kullanılan formül Welch tarafından önerilmiştir. Bu varyans tahmini ile ilişkili serbestlik dereceleri, Welch-Satterthwaite denklemi kullanılarak örnek verilerden yaklaşıklandırılır.[3]

Hesaplamalar

Welch'in t- testi istatistiği t'ni aşağıdaki formüle göre tanımlar:

, and sırasıyla birinci örnek ortalaması, örnek varyansı ve örnek büyüklüğüdür.Student'ın t-testinden farklı olarak, payda birleştirilmiş varyans tahmine dayalı değildir. Bu varyans tahminiyle ilişkili serbestlik dereceleri , Welch-Satterthwaite denklemi kullanılarak yaklaştırılır:

Burada , ilk varyans tahmini ile ilişkili serbestlik derecelerini, ,ikinci varyans tahminiyle ilişkili serbestlik derecelerini ifade etmektedir.

Welch'in t- testi de sıralanan veriler için hesaplanabilir ve daha sonra Welch'in U- testi olarak adlandırılabilir.[4]

İstatistiksel test

T ve hesaplandıktan sonra bu istatistikler, iki popülasyon ortalamasının eşit olduğu (iki uçlu test kullanılarak) boş hipotezi test etmek için t-dağılımı ile veya popülasyon ortalamalarının birinin Diğerinden büyük veya eşit (tek kuyruklu test kullanarak)olduğu alternatif hipotezler için kullanılabilir.

Avantaj ve sınırlamalar

Welch'in t-testi Student'ın t-testinden daha sağlamdır ve eşitsiz varyansların ve eşit olmayan örneklem boyutlarının nominaline yakın tip I hata oranlarını korur.Ayrıca, popülasyon farklılıkları eşit olduğunda ve numune boyutları dengelense bile, Welch'in t-testinin gücü Student'ın t-testinin gücüne yakındır.[2] Welch'in t-testi, tek yönlü varyans analizinden daha sağlam olan 2'den fazla numuneye genellenebilir.[5]

Eşit farklılıkları ön teste tabi tutmak ve daha sonra Student's t-testi veya Welch'in t-testi arasında seçim yapmak tavsiye edilmez. Daha ziyade, Welch'in t-testi, yukarıda belirtildiği gibi doğrudan ve Student'ın t-testine herhangi bir önemli dezavantaj olmadan uygulanabilir. Yer belirleme testinden önce kullanılan eşitliğin eşitliği için yapılan ön testler istatistikçiler tarafından artık yaygın olarak önerilmez; ancak bazı ek kitaplar ve yazılım paketlerinde de geçerlidir. Simülasyonlar, iki aşamalı prosedürün, önem seviyesini korumakta başarısız olduğunu ve genellikle durumun daha da kötüsü ön testlerin sıklıkla testin boyutunu olumsuz etkilediğini ve varyansların eşit olmadığı durumlarda Welch t-testinin Student t-testinden üstün olduğunu göstermiştir. Mevcut simülasyonlar, örneklem boyutları daha küçük olduğunda, varyanslar arasındaki farkın aşırı olmadığından daha hafif olduğu ve anlamlılık seviyesinin daha katı olduğu zaman hata oranlarındaki değişimlerin daha fazla olduğunu ortaya koymaktadır. Dahası, Welch t-testinin geçerliliği, yalnızca bir ön testin gerekli olduğunu belirttiği durumlarda kullanıldığında bozulur. Numune boyutları eşitsiz olduğunda koşulsuz olarak ayrı bir varyans testi kullanılarak optimum koruma sağlanır.[6] Welch'in t-testi çarpık dağılımlar ve büyük örnek boyutları için daha güvenilirdir.[7] Sıralanan dağılımlar ve daha küçük örnekler için güvenilirlik azalır ve burada Welch'in sıralanmış veriler üzerinde t testi yapılabilir.[4]

Örnekler

Aşağıdaki üç örnek Welch'in t-testi ve Student'ın t-testini karşılaştırmaktadır. Örnekler, R programlama dili kullanılarak rastgele normal dağılımlardan alınmıştır.

Üç örnek için de nüfus ortalamaları and dir.

İlk örnek eşit varyans () ve eşit örnek büyüklükleri () içindir. iki rassal numuneyi A1 ve A2 olarak belirtelim:

İkinci örnek eşit olmayan varyanslar(, ) ve eşit olmayan örnek büyüklükleri içindir (, ). Küçük örnek daha büyük varyansa sahiptir:

Üçüncü örnek eşit olmayan varyanslar (, ) ve eşit olmayan örnek boyutları içindir (, ). Büyük örneklemin daha büyük varyansı vardır:

Referans p-değerleri, eşit popülasyon araçlarının boş hipotez için () t istatistiklerinin dağılımlarını simüle ederek elde edildi. Sonuçlar, aşağıdaki tabloda çift-kuyruklu p-değerleri ile özetlenmiştir:

Sample A1 Sample A2 Student's t-test Welch's t-test
Example
11520.87.91523.03.8−2.46280.0210.021−2.4625.00.0210.017
21020.69.02022.10.9−2.10280.0450.150−1.579.90.1490.144
31019.41.42021.617.1−1.64280.1100.036−2.2224.50.0360.042

Welch'in t - testi ve Student'ın t - testi, eşit varyans ve eşit örnek büyüklüğüne sahip iki örnek için pratik olarak aynı sonuçları verdi (Örnek 1). Eşit olmayan varyanslar için, Student'in t- testi, küçük örneklemin daha büyük bir varyansa (Örnek 2) ve daha büyük bir örneğin daha büyük bir varyansa sahip olduğu (örnek 3) yüksek bir p-değeri verdi. Eşit olmayan varyanslar için, Welch'in t- testi, simüle edilen p-değerlerine yakın p-değerleri verdi.

Yazılım Uygulamaları

Language/ProgramFunctionNotes
LibreOfficeTTEST(Data1; Data2; Mode; Type)See [1]28 Şubat 2014 tarihinde Wayback Machine sitesinde arşivlendi.
MATLABttest2(data1, data2, 'Vartype', 'unequal')See [2] 5 Ağustos 2016 tarihinde Wayback Machine sitesinde arşivlendi.
Microsoft Excel pre 2010TTEST(array1, array2, tails, type)See [3]
Microsoft Excel 2010 and laterT.TEST(array1, array2, tails, type)See [4]3 Mart 2014 tarihinde Wayback Machine sitesinde arşivlendi.
Pythonscipy.stats.ttest_ind(a, b, axis=0, equal_var=False)See [5]23 Ekim 2013 tarihinde Wayback Machine sitesinde arşivlendi.
Rt.test(data1, data2, alternative="two.sided", var.equal=FALSE)See [6] 29 Kasım 2016 tarihinde Wayback Machine sitesinde arşivlendi.
Julia UnequalVarianceTTest(data1, data2)See [7] 29 Mart 2016 tarihinde Wayback Machine sitesinde arşivlendi.
Stata ttest varname1 == varname2, welchSee 8 7 Ocak 2010 tarihinde Wayback Machine sitesinde arşivlendi.

Ayrıca bakınız

Kaynakça

  1. ^ a b Welch, B. L. (1947). "The generalization of "Student's" problem when several different population variances are involved". Biometrika. 34 (1–2). ss. 28-35. doi:10.1093/biomet/34.1-2.28. MR 0019277. 
  2. ^ a b c Ruxton, G. D. (2006). "The unequal variance t-test is an underused alternative to Student's t-test and the Mann–Whitney U test". Behavioral Ecology. Cilt 17. ss. 688-690. doi:10.1093/beheco/ark016. 
  3. ^ Ahad, Nor Aishah; Yahaya, Sharipah Soaad Syed (2014). Sensitivity Analysis of Welch’s t -Test. AIP Publishing LLC. ss. 888-893. 
  4. ^ a b Fagerland, M. W.; Sandvik, L. (2009). "Performance of five two-sample location tests for skewed distributions with unequal variances". Contemporary Clinical Trials. Cilt 30. ss. 490-496. doi:10.1016/j.cct.2009.06.007. 
  5. ^ Welch, B. L. (1951). "On the Comparison of Several Mean Values: An Alternative Approach". Biometrika. Cilt 38. ss. 330-336. doi:10.2307/2332579. JSTOR 2332579. 
  6. ^ Zimmerman, D. W. (2004). "A note on preliminary tests of equality of variances". British Journal of Mathematical and Statistical Psychology. Cilt 57. ss. 173-181. doi:10.1348/000711004849222. 
  7. ^ Fagerland, M. W. (2012). "t-tests, non-parametric tests, and large studies—a paradox of statistical practice?". BioMed Central Medical Research Methodology. Cilt 12. s. 78. doi:10.1186/1471-2288-12-78. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Del işlemcisi</span>

Yöney analizinde del işlemcisi, 3 boyutlu Kartezyen koordinatlarda nabla işlemcisine denk gelir ve simgesiyle gösterilir.

<span class="mw-page-title-main">Student'in t dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında t-dağılımı ya da Student'in t dağılımı genel olarak örneklem sayısı veya sayıları küçük ise ve anakütle normal dağılım gösterdiği varsayılırsa çıkartımsal istatistik uygulaması için çok kullanılan bir sürekli olasılık dağılımıdır. Çok popüler olarak tek bir anakütle ortalaması için güven aralığı veya hipotez sınaması ve iki anakütle ortalamasının arasındaki fark için güven aralığı veya hipotez sınamasında, yani çıkarımsal istatistik analizlerde, uygulama görmektedir.

Olasılık kuramı ve istatistik bilim dallarında varyans bir rassal değişken, bir olasılık dağılımı veya örneklem için istatistiksel yayılımın, mümkün bütün değerlerin beklenen değer veya ortalamadan uzaklıklarının karelerinin ortalaması şeklinde bulunan bir ölçüdür. Ortalama bir dağılımın merkezsel konum noktasını bulmaya çalışırken, varyans değerlerin ne ölçekte veya ne derecede yaygın olduklarını tanımlamayı hedef alır. Varyans için ölçülme birimi orijinal değişkenin biriminin karesidir. Varyansın karekökü standart sapma olarak adlandırılır; bunun ölçme birimi orijinal değişkenle aynı birimde olur ve bu nedenle daha kolayca yorumlanabilir.

<span class="mw-page-title-main">Ki-kare dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında ki-kare dağılım özellikle çıkarımsal istatistik analizde çok geniş bir pratik kullanım alanı bulmuştur.

Hipotez testi, bir hipotezin doğruluğunun istatistiksel bir güvenilirlik aralığında saptanması için kullanılan yöntem.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

Pauli matrisleri 2 × 2' lik, karmaşık sayılar içeren Hermisyen ve üniter matrislerden oluşan bir settir. Genellikle Yunan alfabesindeki 'sigma' (σ), harfiyle sembolize edilirler. Bu matrisler:

<span class="mw-page-title-main">F-dağılımı</span>

Olasılık kuramı ve istatistik bilim kollarında, F-dağılımı bir sürekli olasılık dağılımdır. Bu dağılımı ilk bulan istatistikçiler olan R.A. Fisher veGeorge W. Snedecor adlarına bağlı olarak Snedecor'un F dağılımı veya Fisher-Snedecor dağılımı olarak da anılmaktadir.

Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın çoklu değişirli hallere genelleştirilmesidir.

Mann-Whitney U testi niceliksel ölçekli gözlemleri verilen iki örneklemin aynı dağılımdan gelip gelmediğini incelemek kullanılan bir parametrik olmayan istatistik testdir. Aynı zamanda Wilcoxon sıralama toplamı testi veya Wilcoxon-Mann-Whitney testi) olarak da bilinmektedir. Bu testi ilk defa eşit hacimli iki örneklem verileri için Wilcoxon (1945) ortaya atmıştır. Sonradan, Mann and Whitney (1947) tarafından değişik büyüklükte iki örneklem problemleri analizleri için uygulanıp geliştirilmiştir.

İstatistik bilim dalında ağırlıklı ortalama betimsel istatistik alanında, genellikle örneklem, veri dizisini özetlemek için bir merkezsel konum ölçüsüdür. En çok kullanan ağırlıklı ortalama tipi ağırlıklı aritmetik ortalamadır. Burada genel olarak bir örnekle bu kavram açıklanmaktadır. Değişik özel tipli ağırlıklar alan özel ağırlıklı aritmetik ortalamalar bulunmaktadır. Diğer ağırlıklı ortalamalar ağırlıklı geometrik ortalama ve ağırlıklı harmonik ortalamadir. Ağırlıklı ortalama kavramı ile ilişkili teorik açıklamalar son kısımda ele alınacakdır.

F-testi istatistik bilimi içinde bir sıra değişik problemlerde kullanılan parameterik çıkarımsal sınama yöntemidir. F-testi sıfır hipotezine göre gerçekte bir F-dağılımı gösteren sınama istatistiği bulunduğu kabul edilen hallerde, herhangi bir istatistiksel sınama yapma şeklidir. Bu çeşit bir istatistiksel sınama önce Ronald Fisher tarafından 1920'li yıllarda tek yönlü varyans analizi için ortaya atılıp kullanılmış ve sonradan diğer şekillerde F-dağılım kullanan sınamalar da ortaya atılınca, bu çeşit sınamalara genel isim olarak F-testi adı verilmesi Ronald Fisher anısına George W. Snecedor tarafından teklif edilip, istatistikçiler tarafından F-testi bir genel isim olarak kabul edilmiştir.

Tek anakütle ortalaması için parametrik hipotez sınaması veya tek-örneklem için sınama veya μ için sınama, bir rastgele örneklem ortalaması ile bu örneklemin çekilmiş olduğunu düşündüğümüz anakütlenin μ ile belirtilen "anakütle ortalaması" hakkında bir hipotez değeri belirtilmesinin anlamlı olup olmadığını araştırmamızı sağlayan parametrik hipotez sınamasıdır.

Fizikte ve matematik'te, Poincaré grubu,Henri Poincaré adına ithaf edilmiştir,Minkowski uzayzaman'ın izometri grubu'dur ."Uzay ve zaman"ı İlk kez Minkowski 1908'de derste kullanılmıştır.

Doğrusal cebirde veya daha genel ifade ile matematikte matris çarpımı, bir matris çiftinde yapılan ve başka bir matris üreten ikili işlemdir. Reel veya karmaşık sayılar gibi sayılarda temel aritmetiğe uygun olarak çarpma yapılabilir. Başka bir ifade ile matrisler, sayı dizileridir. Bu yüzden, matris çarpımını ifade eden tek bir yöntem yoktur. "Matris çarpımı" terimi çoğunlukla, matris çarpımının farklı yöntemlerini ifade eder. Matris çarpımının anahtar özellikleri şunlardır: Asıl matrislerin satır ve sütun sayıları, ve matrislerin girişlerinin nasıl yeni bir matris oluşturacağıdır.

<span class="mw-page-title-main">Elektromanyetizmanın eşdeğişim formülasyonu</span>

Klasik manyetizmanın eşdeğişimli formülasyonu klasik elektromanyetizma kanunlarının(özellikle de, Maxwell denklemlerini ve Lorentz kuvvetinin) Lorentz dönüşümlerine göre açıkça varyanslarının olmadığı, rektilineer eylemsiz koordinat sistemleri kullanılarak özel görelilik disiplini çerçevesinde yazılma sekillerini ima eder. Bu ifadeler hem klasik elektromanyetizma kanunlarının herhangi bir eylemsiz koordinat sisteminde aynı formu aldıklarını kanıtlamakta kolaylık sağlar hem de alanların ve kuvvetlerin bir referans sisteminden başka bir referans sistemine uyarlanması için bir yol sağlar. Bununla birlikte, bu Maxwell denklemlerinin uzay ve zamanda bükülmesi ya da rektilineer olmayan koordinat sistemleri kadar genel değildir.

Einstein-Hilbert etkisi genel görelilikte en küçük eylem ilkesi boyunca Einstein alan denklemleri üretir. Hilbert etkisi genel görelilikte yerçekiminin dinamiğini tarifleyen fonksiyonel işlemdir. metrik işaretiyle, etkinin çekimsel kısmı,

<span class="mw-page-title-main">Stres-enerji tensörü</span>

Stres-enerji tensörü, fizikte uzayzaman içerisinde enerji ve momentumun özkütle ve akısını açıklayan, Newton fiziğindeki stres tensörünü genelleyen bir tensördür. Bu, maddedinin, radyasyonun ve kütleçekimsel olmayan kuvvet alanının bir özelliğidir. Stres-enerji tensörü, genel göreliliğin Einstein alan denklemlerindeki yerçekimi alanının kaynağıdır, tıpkı kütle özkütlesinin Newton yerçekiminde bu tip bir alanın kaynağı olması gibi.

Differansiyal geometri içerisinde,. gerçek olmayan Riemannia çok katlılarını ifade etmek için kullanılan eğriliktir. Genel Görelikte içerisinde, Einstein Tensör’ünün ortaya çıkardığı Einstein’nın alan denklemlerinin kütleçekimi için tanımladığı uzay-zaman eğriliğini tutarlı bir şekilde enerji ile açıklamasıdır.

Matematikte Radon-Nikodym teoremi, aynı ölçülebilir uzayda tanımlanmış iki ölçü arasındaki ilişkiyi ifade eden bir sonuçtur. Burada ölçü ile kastedilen ölçülebilir bir uzayın ölçülebilir alt kümelerine tutarlı bir büyüklük atayan bir küme fonksiyonudur. Ölçü örnekleri arasında alan ve hacim verilebilir.