İçeriğe atla

Weber sayısı

Bir tuğlanın yarısının suya çarpması sonucu oluşan bir sıçrama; görüntü yaklaşık olarak yarım metre genişliğindedir. Havada serbestçe hareket eden su damlacıklarına dikkat edin, bu durum yüksek Reynolds sayısı akışlarının tipik bir özelliğidir; damlacıkların karmaşık ve küresel olmayan şekilleri, Weber sayısının yüksek olduğunu gösterir. Ayrıca suyun içinde hapsolmuş kabarcıklara ve darbe noktasından uzaklaşarak yayılan genişleyen bir distürbans halkasına dikkat edin.

Weber sayısı (We), akışkanlar mekaniği alanında farklı iki akışkan arasındaki ara yüzeylerin bulunduğu akışkan akışlarını analiz ederken sıkça kullanılan bir boyutsuz sayıdır ve özellikle yüksek derecede eğilmiş yüzeylere sahip çok fazlı akışlar için oldukça faydalıdır.[1] Bu sayı, Moritz Weber (1871–1951)'in adıyla anılmaktadır.[2] Bu sayı, akışkanın eylemsizliğinin yüzey gerilimine kıyasla göreceli önemini ölçmek için kullanılan bir parametre olarak düşünülebilir. İnce film akışlarının ve damlacık ile kabarcık oluşumlarının analizinde büyük önem taşır.

Matematiksel ifade

Weber sayısı şu şekilde ifade edilebilir:

burada:

  • , cismin kesit alanının sürükleme katsayısıdır.
  • , akışkanın yoğunluk değeridir (kg/m3).
  • , akışkanın süratidir (m/s).
  • , akışkanın karakteristik uzunluk ölçüsüdür (genellikle damlacık çapı (m)).
  • , akışkanın yüzey gerilimi değeridir (N/m).

İndirgenmiş Weber sayısı,

çarpışma anındaki kinetik enerjinin yüzey enerjisine oranına eşittir,

,

burada

 

ve

.

Weber sayısı, sıkıştırılamaz Navier–Stokes denklemleri içinde serbest yüzey sınır koşulu aracılığıyla ortaya çıkar.[3]

Sabit yoğunluk ve dinamik viskozite değerine sahip bir akışkan için, serbest yüzey ara yüzeyinde normal gerilme ve yüzey gerilimi ile ilişkili eğrilik kuvveti arasında bir denge durumu vardır:

Burada , yüzeye dik birim normal vektörü temsil eder, Cauchy gerilme tensörüdür ve diverjans operatörüdür. Sıkıştırılamaz bir akışkanın Cauchy gerilme tensörü şu şekilde ifade edilir:

Dinamik basıncı olarak tanımlayıp, yüksek Reynolds sayısı akışını varsayarak, değişkenler şu ölçeklendirmelerle boyutsuzlaştırılabilir:

Boyutsuzlaştırılmış değişkenlerde serbest yüzey sınır koşulu şu şekilde olur:

Burada Froude sayısı, Reynolds sayısı ve Weber sayısıdır. Weber sayısının etkisi, bu sayede, yerçekimi ve viskoz kuvvetlere göre nicel olarak değerlendirilebilir.

Uygulamalar

Weber sayısının önemli bir uygulaması, ısı borularının incelenmesidir. Isı borusunun buhar çekirdeğindeki momentum akısı yüksek olduğunda, fitildeki sıvıya uygulanan kayma gerilmesi, damlacıkları buhar akışına katacak kadar büyük olabilir. Weber sayısı, bu olgunun başlangıcını belirleyen boyutsuz bir parametredir ve bu fenomen "entrainment limiti" olarak adlandırılır (Weber sayısı 1 veya daha büyük olduğunda). Bu bağlamda, Weber sayısı, buhar tabakasındaki momentumun, sıvıyı sınırlayan yüzey gerilimi kuvvetine oranı olarak tanımlanır ve karakteristik uzunluk yüzey gözenek boyutudur.

Kaynakça

  1. ^ Arnold Frohn; Norbert Roth (27 Mart 2000). Dynamics of Droplets. Springer Science & Business Media. ss. 15-. ISBN 978-3-540-65887-0. 
  2. ^ Philip Day; Andreas Manz; Yonghao Zhang (28 Temmuz 2012). Microdroplet Technology: Principles and Emerging Applications in Biology and Chemistry. Springer Science & Business Media. ss. 9-. ISBN 978-1-4614-3265-4. 
  3. ^ Bush, John W.M. "Surface Tension Module" (PDF). Department of Mathematics, MIT. 3 Mart 2024 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 16 Temmuz 2024. 

Diğer okumalar

  • Weast, R. Lide, D. Astle, M. Beyer, W. (1989-1990). CRC Handbook of Chemistry and Physics. 70th ed. Boca Raton, Florida: CRC Press, Inc.. F-373,376.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Maxwell denklemleri</span>

Maxwell denklemleri Lorentz kuvveti yasası ile birlikte klasik elektrodinamik, klasik optik ve elektrik devrelerine kaynak oluşturan bir dizi kısmi türevli (diferansiyel) denklemlerden oluşur. Bu alanlar modern elektrik ve haberleşme teknolojilerinin temelini oluşturmaktadır. Maxwell denklemleri elektrik ve manyetik alanların birbirileri, yükler ve akımlar tarafından nasıl değiştirildiği ve üretildiğini açıklamaktadır. Bu denklemler sonra İskoç fizikçi ve matematikçi olan ve 1861-1862 yıllarında bu denklemlerin ilk biçimini yayımlayan James Clerk Maxwell' in ismi ile adlandırılmıştır.

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

Olasılık kuramı ve istatistik bilim dallarında varyans bir rassal değişken, bir olasılık dağılımı veya örneklem için istatistiksel yayılımın, mümkün bütün değerlerin beklenen değer veya ortalamadan uzaklıklarının karelerinin ortalaması şeklinde bulunan bir ölçüdür. Ortalama bir dağılımın merkezsel konum noktasını bulmaya çalışırken, varyans değerlerin ne ölçekte veya ne derecede yaygın olduklarını tanımlamayı hedef alır. Varyans için ölçülme birimi orijinal değişkenin biriminin karesidir. Varyansın karekökü standart sapma olarak adlandırılır; bunun ölçme birimi orijinal değişkenle aynı birimde olur ve bu nedenle daha kolayca yorumlanabilir.

<span class="mw-page-title-main">Akışkanlar dinamiği</span> hareket halindeki akışkanların (sıvılar ve gazlar) doğal bilimi

Fizik, fiziksel kimya ve mühendislikte akışkanlar dinamiği, akışkanların akışını tanımlayan akışkanlar mekaniğinin bir alt disiplinidir. Aerodinamik ve hidrodinamik dahil olmak üzere çeşitli alt disiplinleri vardır. Akışkanlar dinamiğinin, uçaklardaki kuvvetlerin ve momentlerin hesaplanması, boru hatları boyunca petrolün Kütle akış hızının belirlenmesi, hava durumu modellerinin tahmin edilmesi, uzaydaki bulutsuların anlaşılması ve fisyon silahı patlamasının modellenmesi dahil olmak üzere geniş bir uygulama yelpazesi vardır.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">Mie saçılması</span>

Mie saçılması veya Mie teorisi, düzlem bir elektromanyetik dalganın (ışık) homojen bir küre tarafından saçılmasını ifade eder. Maxwell denklemlerinin Lorenz–Mie–Debye çözümü olarak da bilinmektedir. Denklemlerin çözümü sonsuz bir vektör küresel harmonik serisi şeklinde yazılır. Saçılma ismini fizikçi Gustav Mie'den almaktadır; analitik çözümü ilk kez 1908 yılında yayınlanmıştır.

Lorentz kuvveti, fizikte, özellikle elektromanyetizmada, elektromanyetik alanların noktasal yük üzerinde oluşturduğu elektrik ve manyetik kuvvetlerin bileşkesidir. Eğer q yük içeren bir parçacık bir elektriksel E ve B manyetik alanın var olduğu bir ortamda v hızında ilerliyor ise bir kuvvet hissedecektir. Oluşturulan herhangi bir kuvvet için, bir de reaktif kuvvet vardır. Manyetik alan için reaktif kuvvet anlamlı olmayabilir, fakat her durumda dikkate alınmalıdır.

Akım yoğunluğu elektrik devresinde yoğunluğun bir ölçüsüdür. Vektör olarak tanımlanır ve elektrik akımının kesit alana oranıdır. SI'de akım yoğunluğu amper/metrekare veya coulomb/saniye/metrekare cinsinden ifade edilebilir.

Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın çoklu değişirli hallere genelleştirilmesidir.

Delta metodu istatistikte, bir asimtotik normal istatistiki tahmin edicinin fonksiyonu için bu tahmin edicinin sınırlayıcı varyans bilgisi kullanılarak yaklaşık bir olasılık dağılımı türetme metodudur. Delta metodu merkezi limit teoreminin genelleştirilmiş hali olarak ele alınabilir.

Ewald toplamı, ismini Paul Peter Ewald'dan alır, periyodik sistemlerin, özellikle elektrostatik enerjilerin, etkileşim enerjilerini hesaplayan bir yöntemdir. Ewald toplamı Poisson toplam formülünde gerçek uzaydaki etkileşim enerjilerinin Fourier uzayındaki denk bir toplam ile değiştirilmiş toplam formülünün özel bir halidir. Bu yöntemin avantajı gerçek uzaydaki etkileşimler uzun mesafeli olduğunda Fourier uzayındaki toplamın hızlı yakınsıyor olmasıdır. Elektrostatik enerjiler kısa ve uzun mesafeli etkileşimlerden oluştukları için en verimli hesaplama etkileşim potansiyeli gerçek uzayda kısa mesafeli etkileşim toplamı ve Fourier uzayında uzun mesafeli etkileşim toplamı olarak iki parçaya ayrıldığında gerçekleşir.

Doğrusal cebirde veya daha genel ifade ile matematikte matris çarpımı, bir matris çiftinde yapılan ve başka bir matris üreten ikili işlemdir. Reel veya karmaşık sayılar gibi sayılarda temel aritmetiğe uygun olarak çarpma yapılabilir. Başka bir ifade ile matrisler, sayı dizileridir. Bu yüzden, matris çarpımını ifade eden tek bir yöntem yoktur. "Matris çarpımı" terimi çoğunlukla, matris çarpımının farklı yöntemlerini ifade eder. Matris çarpımının anahtar özellikleri şunlardır: Asıl matrislerin satır ve sütun sayıları, ve matrislerin girişlerinin nasıl yeni bir matris oluşturacağıdır.

Einstein-Hilbert etkisi genel görelilikte en küçük eylem ilkesi boyunca Einstein alan denklemleri üretir. Hilbert etkisi genel görelilikte yerçekiminin dinamiğini tarifleyen fonksiyonel işlemdir. metrik işaretiyle, etkinin çekimsel kısmı,

<span class="mw-page-title-main">Hipsometrik denklem</span>

İki izobarik yüzey arasındaki kalınlık, h tabakasının ortalama sanal sıcaklığına ilişkin bir denklemi verir.

<span class="mw-page-title-main">Fermi'nin etkileşimi</span>

Parçacık fiziğinde, Fermi etkileşimi beta bozunmasının 1933'te Enrico Fermi tarafından önerilmiş bir açıklamasıdır. Teori, dört fermiyonun birbiriyle direkt etkileştiğini varsayar. Bu etkileşim bir nötronun bir elektron, bir nötrino ve bir protonla doğrudan bağlanmasıyla bir nötronun beta bozunmasını açıklar.

Chandrasekhar sayısı, manyetik konveksiyon süreçlerinde, Lorentz kuvveti ile viskozite arasındaki oransal ilişkiyi ifade etmek için kullanılan bir boyutsuz nicelik olarak tanımlanır. Bu sayı, Hindistan kökenli astrofizikçi Subrahmanyan Chandrasekhar'ın adıyla anılmaktadır.

Laplace sayısı (La), diğer adıyla Suratman sayısı (Su), serbest yüzey akışkanlar dinamiği karakterizasyonunda kullanılan bir boyutsuz sayıdır. Bu sayı, yüzey gerilimi ile akışkan içindeki momentum taşınımı arasındaki oranı temsil eder.

Akışkanlar dinamiği alanında, Morton sayısı (Mo), Eötvös sayısı veya Bond sayısı ile birlikte, çevresindeki bir akışkan veya sürekli faz c içinde hareket eden baloncukların veya damlacıkların şeklini belirlemek için kullanılan bir boyutsuz sayıdır. Bu sayı, 1953 yılında W. L. Haberman ile birlikte tanımlayan Rose Morton'dan ismini almıştır.

Akışkanlar dinamiği alanında, basınç katsayısı bir boyutsuz sayı olup, bir akış alanındaki bağıl basınçları ifade eder. Basınç katsayısı, aerodinamik ve hidrodinamik çalışmalarında kullanılmaktadır. Her bir akış alanında, her konumsal noktanın kendine özgü bir basınç katsayısı, Cp değeri bulunmaktadır.

Stanton sayısı (St), bir akışkana aktarılan ısının akışkanın ısı kapasitesine oranını ölçen bir boyutsuz sayıdır. Stanton sayısı, Thomas Stanton (mühendis)'in (1865–1931) adına ithafen verilmiştir. Bu sayı, zorlanmış konveksiyon akışlarındaki ısı transferini karakterize etmek için kullanılır.