İçeriğe atla

Weber elektrodinamiği

Weber elektrodinamiği, Wilhelm Eduard Weber tarafından Maxwell elektrodinamiğine alternatif olarak geliştirilmiştir. Bu teoride, Coulomb Yasası hıza bağımlı hale gelir. Ana akım çağdaş fizikte Maxwell elektrodinamiği, klasik elektromanyetizmanın tartışmasız temeli olarak kabul edilirken, Weber elektrodinamiği genellikle bilinmemektedir (veya yok sayılmaktadır).[1]

Konuyla ilgili yayınlar

  • André Koch Torres Assis: Weber's electrodynamics. Kluwer Acad. Publ., Dordrecht 1994, 0-7923-3137-0.

Kaynakça

  1. ^ Most (perhaps all) popular textbooks on classical electromagnetism do not mention Weber electrodynamics. Instead, they present Maxwell's equations as the uncontroversial foundation of classical electromagnetism. Four examples are: Classical electrodynamics by J.D. Jackson (3rd ed., 1999); Introduction to electrodynamics by D. J. Griffiths (3rd ed., 1999); Physics for students of science and engineering by D. Halliday and R. Resnick (part 2, 2nd ed., 1962); The Feynman Lectures on Physics by Feynman, Leighton, and Sands,

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Richard Feynman</span> Amerikalı teorik fizikçi (1918 – 1988)

Richard Phillips Feynman, kuantum mekaniğinin ayrılmaz formülasyonu, kuantum elektrodinamiği teorisi, aşırı soğutulmuş sıvı helyumun süper-akışkan fiziği ve partonu önerdiği parçacık fiziğindeki çalışmaları ile 1965'te, Julian Schwinger ve Sin-Itiro Tomonaga ile birlikte Nobel Fizik Ödülü'ne layık görülmüş Amerikalı teorik fizikçidir.

<span class="mw-page-title-main">Kuvvet</span> kütleli bir cisme hareket kazandıran etki

Fizik disiplininde, kuvvet bir cismin hızını değiştirmeye zorlayabilen, yani ivmelenmeye sebebiyet verebilen - hızında veya yönünde bir değişiklik oluşturabilen - bir etki olarak tanımlanır, bu etki diğer kuvvetlerle dengelenmediği müddetçe geçerlidir. Itme ya da çekme gibi günlük kullanımda yer alan eylemler, kuvvet konsepti ile matematiksel bir netliğe ulaşır. Kuvvetin hem büyüklüğü hem de yönü önemli olduğundan, kuvvet bir vektör olarak ifade edilir. Kuvvet için SI birimi, newton (N)'dur ve genellikle F simgesi ile gösterilir.

<span class="mw-page-title-main">Max Weber</span> Alman sosyolog

Max Weber, Alman düşünür, sosyolog ve ekonomi politik uzmanı. Modern antipozitivistik toplumbilimi incelemesinin öncüsü olduğu düşünülür. Sosyolojiyi yöntem bilimsel olgunluğa eriştirmiştir.

<span class="mw-page-title-main">Elektromanyetizma</span> elektrikle yüklü parçacıklar arasındaki etkileşime neden olan fiziksel kuvvet

Elektromanyetizma, elektrikle yüklü parçacıklar arasındaki etkileşime neden olan fiziksel kuvvet'tir. Bu etkileşimin gerçekleştiği alanlar, elektromanyetik alan olarak tanımlanır. Doğadaki dört temel kuvvetten biri, elektromanyetizmadır. Diğer üçü; güçlü etkileşim, zayıf etkileşim ve kütleçekim kuvvetidir.

<span class="mw-page-title-main">Elektromotor kuvvet</span>

Elektromanyetizma ve elektronikte, elektromotor kuvvet, elektriksel olmayan bir kaynak tarafından üretilen elektriksel eylemdir. Cihazlar (dönüştürücüler); piller ya da jeneratörler gibi diğer enerji türlerini elektrik enerjisine dönüştürerek bir emf sağlar. Bazen elektromotor kuvveti tanımlamak için su basıncına bir analoji kullanılır.

<span class="mw-page-title-main">Alan (fizik)</span>

Alan, fizik kuramlarında kullanılan, matematikteki cebirsel alanın tüm özelliklerini taşıyan terim. Genellikle bu etki 100 nanometre ve daha küçük skalalarda etkili olur. Bu etki nanoteknolojiyle aynı ölçeğe denk gelir. Bir alan mekan ve zaman içinde her bir nokta için bir değeri olan bir fiziksel miktardır. Örneğin, hava durumu, rüzgâr hızı uzayda her nokta için bir vektör atayarak tarif edilmektedir. Her bir vektör bu noktada hava hareketinin hızını ve yönünü temsil eder.

<span class="mw-page-title-main">Kuantum alan teorisi</span> hareketli parçacık sistemlerinin kuantizasyonuyla ilgilenen parçacık mekaniğiyle benzer olarak, alanların hareketli sistemlerine parçacık mekaniğinin uygulamasıdır

Kuantum Alan Teorisi (METATEORİ); Klasik Birleşik Alan (KAT) Teorilerini, Özel Görekliliği (SRT), Kuantum mekaniği (KM) teorilerini tek bir teorik çerçeve altında toplayan bir üst teoridir.

<span class="mw-page-title-main">Özdirenç</span>

Özdirenç (resistivity) birim uzunluk ve kesit alana sahip bir iletkenin elektrik akımına karşı ne ölçüde direnç gösterdiğinin bir ölçüsüdür. Özdirenç iletkenin geometrik ölçülerinden bağımsız bir büyüklük olup, sadece iletkenin yapıldığı maddenin özellikleriyle ilgilidir.

<span class="mw-page-title-main">Temel parçacık</span> Başka parçacıklardan oluştuğu bilinmeyen parçacıklar.

Temel parçacıklar, bilinen hiçbir alt yapısı olmayan parçacıklardır. Bu parçacıklar evreni oluşturan maddelerin temel yapıtaşıdır. Standart Model'de kuarklar, leptonlar ve ayar bozonları temel taneciklerdir.

<span class="mw-page-title-main">Klasik elektromanyetizma</span>

Klasik elektromanyetizm, klasik elektromıknatıslık ya da klasik elektrodinamik teorik fiziğin elektrik akımı ve elektriksel yükler arasındaki kuvvetlerin sonuçlarını inceleyen dalıdır. kuantum mekaniksel etkilerin ihmal edilebilir derecede küçük olmasını sağlayacak kadar büyük ölçütlü sistemler için elektromanyetik fenomenlerin mükemmel bir açıklamasını sunar.

<span class="mw-page-title-main">Yer değiştirme akımı</span>

Elektromanyetizmada yer değiştirme akımı elektrik yer değiştirme alanının değişim oranıyla tanımlanan bir niceliktir. Yer değiştirme akımının birimi akım yoğunluğu cinsinden ifade edilir. Yer değiştirme akımı gerçek akımlar gibi manyetik alan üretir. Yer değiştirme akımı hareketli yüklerin yarattığı bir elektrik akımı değil; zamana bağlı olarak değişim gösteren elektrik alanıdır. Maddelerde, atomun içerisinde bulunan yüklerin küçük hareketlerinin de buna bir katkısı vardır ki buna dielektrik polarizasyon denir.

Wheeler–Feynman soğurucu teorisi elektromanyetik alan denklemlerinin, alan denklemleri olmalarından dolay, zaman evritimi altında simetrik olmaları gerektiği fikriyle doğmuştur. Bu aksiyomun fiziğin kendi içinde var olan simetriden kaynaklanıyor. Aslında görünürde bu tarz bir simetrinin kırılıp da bir yönün diğerlerine göre daha üstün olmasına sebep olabilecek bir sebep yoktur. Böylece bu simetriyi göz önüne alan bir teori bir zaman yönelimini diğerine tercih eden teoriler arasında daha seçkin bir özelliğe sahiptir. Burada Mach prensibini andıran bir başka anahtar fikir ise elementer bir parçacığın bir başka elementer parçak üzerine doğrudan etkiyemeyeceğidir. Bu kendiliğinden öz enerji problemini ortadan kaldırır. Bu teori kendisini kuran kişilerin, Richard Feynman ve John Archibald Wheeler adını almıştır.

Elektromanyetik indüksiyon, değişen bir alana maruz kalmış bir iletkenin üzerindeki potansiyel fark (voltaj) üretimidir.

<span class="mw-page-title-main">Gauss yüzeyi</span>

Gauss yüzeyi, üç boyutlu uzayda içinden bir vektör alanın akısı geçen kapalı bir yüzeydir; genellikle elektrik alanı, yerçekim alanı ve manyetik alanı bulmak için kullanılır. rastgele seçilmiş bu kapalı yüzey S = ∂V Gauss yasasıyla ilişkili alan için conjuction olarak bir yüzey integrali sergilenerek kullanılır. Elektrostatik alanın kaynağı olarak elektrik yükünün miktarı ya da yerçekimi alanını kaynağı olarak yerçekimi ağırlığını kapalı alanda hesaplamak için kullanılır. Maddesel olması için, elektrik alan bu metinde, alanın en sık bilinen yüzey şekli olarak tanımlandırıldı. Gauss yüzeyleri genellikle, yüzey integralinin simetrisini basitçe hesaplayabilmek için dikkatle seçildi. Bir Gauss yüzeyi, yüzey üzerindeki her noktanın elektrik alan bileşenleri için, sabit bir normal vektörüne doğru seçilmiş ise, hesaplama zor bir integral gerektirmeyecektir.

Elektromanyetizma fiziğinde, Abraham-Lorentz kuvveti elektromanyetik radyasyon yayması nedeniyle hızlanan yüklü bir parçacıktaki geri tepme kuvvet idir. Ayrıca radyasyon reaksiyon kuvveti veya kendinden kuvvet denir. Formül özel görelilik teorisini önceler ve ışık hızı düzeninin hızlarında geçerli değildir. Bunun göreli genellemesine "Abraham-Lorentz-Dirac kuvveti" denir. Bunların her ikisi de kuantum fiziği değil, klasik fizik 'in bilgi kapsamındadır. Bu nedenle yaklaşık olarak Compton dalga boyu veya altındaki mesafelerde geçerli olmayabilir. Ancak tamamıyla kuantum ve göreli olan benzer bir formül vardır, bu formül "Abraham-Lorentz-Dirac-Langevin denklemi" olarak adlandırılır.

<span class="mw-page-title-main">Eylemsiz referans çerçevesi</span>

Fizikte, eylemsiz referans sistemi, zamanı ve uzayı homojen ve izotropik olarak zamandan bağımsız bir şekilde tanımlanan referans sistemidir.

Varyasyon presibi, varyasyonlar hesabında kullanılan bilimsel bir prensiptir. Temel olarak, uygulamanın yapıldığı alanla ilgili nicelikler için en büyük veya en küçük değerleri bulmak için yine bu niceliklere bağlı uygun fonksiyonlar türetmeye dayanır. Örneğin, “İki ucundan tutturulmuş bir zincirin şekli nedir?” sorusunun cevabını varyasyon prensipleri ile; yer çekimine bağlı potansiyel enerjinin davranış sonucunda minimize edilmesi olarak bulunabilir.

Parçacık fiziğinde, kuantum alan teorisinin tarihi, 1920’lerin sonlarında elektromanyetik alanın kuantizesiyle çalışan Paul Dirac tarafından oluşturulması ile başlar. Teorideki başlıca gelişmeler 1950’lerde gerçekleşti ve bu gelişmeler kuantum elektrodinamiğinin (KED) başlangıcına neden oldu. KED çok başarılıydı ve “doğaldı”, çünkü aynı temel kavramları doğanın diğer kuvvetlerinde kullanılabilmek için yapılan denemeleri içeriyordu. Bu denemeler, parçacık fiziğinin modern standart modelini üreten güçlü ve zayıf nükleer kuvvetleri ayar kuramının uygulamasında başarılı olmuştu.

Elektrodinamikte Larmor formülü, ivmelenen ve göreli olmayan noktasal bir yükün yaydığı toplam gücü ifade eder. İlk kez fizikçi Joseph Larmor tarafından 1897'de türetilen formül, ışık hızından çok daha küçük hızlar için

Wheeler-Feynman emme teorisi, adını yaratıcıları olan fizikçiler Richard Feynman ve John Archibald Wheeler'dan alan Wheeler-Feynman soğurucu teorisi, elektromanyetik alan denklemlerinin çözümlerinin şu varsayımdan türetilmiş bir elektrodinamiğin yorumudur: alan denklemlerinin kendileri gibi, zaman-ters dönüşüm altında değişmez olmalıdır. Gerçekten de, tercihli bir zaman yönünü öne çıkaran ve böylece geçmiş ile gelecek arasında bir ayrım yapan, zaman-ters simetrisinin kırılması için görünürde bir neden yoktur. Zamanın tersine çevrilmesiyle değişmeyen bir teori daha mantıklı ve zariftir. Bu yorumdan kaynaklanan ve Mach'ın Hugo Tetrode'a bağlı ilkesini hatırlatan bir diğer temel ilke, temel parçacıkların kendi kendine etkileşmediğidir. Bu, öz enerji sorununu hemen ortadan kaldırır.