İçeriğe atla

Weber (birim)

Fizikte, weber (sembol: Wb) manyetik akı nın SI birim sistemindeki karşılığıdır. Alman fizikçi Wilhelm Eduard Weber (1804 - 1891) 'dan dolayı bu isim ile adlandılırmıştır.

Weber (Wb), manyetik akı birimi olarak kullanılır ve manyetik akının, bir yüzeyin belli bir alanı boyunca geçiş sayısını ifade eder.

Weber ölçümü, bir manyetik alanın bir yüzeyden geçişini ölçmek için kullanılır. Manyetik alan, manyetik bir alan üreten bir kaynaktan kaynaklanabilir veya bir manyetik alanın değişen bir alanındaki hareket eden bir iletken veya manyetik malzeme tarafından üretilebilir.

Bir weber, manyetik akının manyetik akı yoğunluğu ile yüzey alanının çarpımı olarak ifade edilir ve aşağıdaki formülle hesaplanır:

Wb = T * m^2

Burada, Wb: Weber (manyetik akı birimi) T: Manyetik akı yoğunluğu (Tesla) m: Yüzey alanı (metrekare)

Örneğin, manyetik akı yoğunluğu 1 Tesla ve yüzey alanı 0.5 metrekare olan bir alanda manyetik akı aşağıdaki şekilde hesaplanabilir:

Wb = T * m^2 = 1 T * 0.5 m^2 = 0.5 Wb

Bu alandaki manyetik akı 0.5 weber veya 0.5 Wb olarak ifade edilir.

Weber Faraday kanununa göre belirlenmiştir. Akıda, bir saniye deki bir weberlik değişim bir volt luk elektro motor kuvvet endüklenmesine neden olur.

SI birim sistemi nde, weber kg·m2·s−2·A−1 'e eşittir. Bu da volt-saniyeye (V·s) eşittir. 1 weber 1 T m2 = maxwell'e eşittir.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Maxwell denklemleri</span>

Maxwell denklemleri Lorentz kuvveti yasası ile birlikte klasik elektrodinamik, klasik optik ve elektrik devrelerine kaynak oluşturan bir dizi kısmi türevli (diferansiyel) denklemlerden oluşur. Bu alanlar modern elektrik ve haberleşme teknolojilerinin temelini oluşturmaktadır. Maxwell denklemleri elektrik ve manyetik alanların birbirileri, yükler ve akımlar tarafından nasıl değiştirildiği ve üretildiğini açıklamaktadır. Bu denklemler sonra İskoç fizikçi ve matematikçi olan ve 1861-1862 yıllarında bu denklemlerin ilk biçimini yayımlayan James Clerk Maxwell' in ismi ile adlandırılmıştır.

<span class="mw-page-title-main">Manyetik alan</span> elektrik yüklerinin bağıl hareketteki manyetik etkisini tanımlayan vektör alanı

Mıknatıssal veya manyetik alan, bir mıknatısın mıknatıssal özelliklerini gösterebildiği alandır. Mıknatısın çevresinde oluşan çizgilere de, mıknatısın o bölgede oluşturduğu manyetik alan çizgileri denir. Manyetik alan çizgilerinin yönü kuzeyden (N) güneye (S) doğrudur. Manyetik alan hareket eden elektrik yükleri tarafından, zamanla değişen elektrik alanlardan veya temel parçacıklar tarafından içsel olarak üretilir. Manyetik alan vektörel bir büyüklüktür. Yani herhangi bir noktada yönü ve şiddeti ile tanımlanır. Manyetik alan B harfiyle temsil edilir. SI birimi Sırp bilim insanı Nikola Tesla'nın soyadı Tesladır. Manyetik alan Lorentz kuvveti kullanılarak ölçüldüğü için birimi coulumb-metre/saniye başına Newtondur. Saniye başına coulomba bir amper dendiği için T=N(Am)-1 olarak da geçer. Tesla günlük olaylar için çok büyük bir birim olduğundan pratikte, gauss (G) kullanılmaktadır. 1 T=104 G

<span class="mw-page-title-main">Volt</span> elektrikte kullanılan potansiyel farkı (gerilim) birimi

Volt, elektrikte kullanılan potansiyel farkı (gerilim) birimi. Elektromotor kuvvet birimi de volttur. Bir ohm'luk bir direnç üzerinden, bir amper'lik elektrik akımı geçmesi halinde direncin iki ucu arasındaki gerilim bir volttur.

Watt, SI'de, uluslararası standart güç birimidir.

Tesla birimi manyetik akı yoğunluğunun SI birimidir. Manyetik alanın yoğunluğunu belirler.

<span class="mw-page-title-main">İndüktans</span>

İndüktans elektromanyetizma ve elektronikte bir indüktörün manyetik alan içerisinde enerji depolama kapasitesidir. İndüktörler, bir devrede akımın değişimiyle orantılı olarak karşı voltaj üretirler. Bu özelliğe, onu karşılıklı indüktanstan ayırmak için, aynı zamanda öz indüksiyon da denir. Karşılıklı indüktans, bir devredeki indüklenen voltajın başka bir devredeki akımın zamana göre değişiminin etkisiyle oluşur.

Lorentz kuvveti, fizikte, özellikle elektromanyetizmada, elektromanyetik alanların noktasal yük üzerinde oluşturduğu elektrik ve manyetik kuvvetlerin bileşkesidir. Eğer q yük içeren bir parçacık bir elektriksel E ve B manyetik alanın var olduğu bir ortamda v hızında ilerliyor ise bir kuvvet hissedecektir. Oluşturulan herhangi bir kuvvet için, bir de reaktif kuvvet vardır. Manyetik alan için reaktif kuvvet anlamlı olmayabilir, fakat her durumda dikkate alınmalıdır.

Akım yoğunluğu elektrik devresinde yoğunluğun bir ölçüsüdür. Vektör olarak tanımlanır ve elektrik akımının kesit alana oranıdır. SI'de akım yoğunluğu amper/metrekare veya coulomb/saniye/metrekare cinsinden ifade edilebilir.

<span class="mw-page-title-main">Alternatif akım</span>

Alternatif akım, genliği ve yönü periyodik olarak değişen elektriksel akımdır. En çok kullanılan dalga türü sinüs dalgasıdır. Farklı uygulamalarda üçgen ve kare gibi değişik dalga biçimleri de kullanılmaktadır. Bütün dalgalar birbirlerine elektronik devreler aracılığı ile çevrilebilir. Devrede kondansatör, diyotlar, röleler ile bu çevrim yapılabilir.

<span class="mw-page-title-main">Siemens (birim)</span>

Siemens SI birim sisteminde elektrik iletkenliği birimi olup ohm'un tersidir. Adını, Alman kâşif ve iş insanı Ernst Werner von Siemens'den alır. Daha önceleri mho ile de gösterilmiştir. 1971'de, türetilmiş bir SI birimi olarak kabul edilmiştir.

Boşluğun empedansı elektromanyetikte başta anten hesapları olmak üzere çeşitli hesaplarda kullanılan bir sabittir. MKS sisteminde birimi ohm dur. (Ω).Tanımı;

Henri elektromanyetikte indüktans birimidir. Birim adını Amerikalı bilim insanı Joseph Henry'dan (1797-1878) almıştır. Birimin orijinal hali henry olup Türkiye'de telaffuz kolaylığı açısından henri olarak söylenmektedir. Birim küçük harfle yazılmakta, ancak H şeklindeki kısaltması büyük harfle yapılmaktadır. Ast katı ve üst katı açısından diğer birimlerin tabi olduğu kurallara tabidir. Uygulamada, özellikle ast katları kullanılmaktadır.

<span class="mw-page-title-main">Elektromanyetik alan</span>

Elektromanyetik alan, Elektrik alanı'ndan ve Manyetik alan'dan meydana gelir.

Φ harfiyle gösterilen Manyetik akı, toplam manyetizmanın ölçüsüdür ve bu yönüyle elektrik yükün manyetik karşılığıdır. Manyetik akı yoğunluğu ise B harfiyle gösterilir ve birim kesit alandan geçen manyetik akı miktarının ölçüsüdür.

Elektromanyetizmada manyetik alınganlık uygulanan manyetik alana cevap olarak materyalde oluşan manyetizasyon derecesini belirten birimsiz oran sabitidir. Manyetiklenebilirlik ise manyetik moment ve manyetik akı yoğunluğu arasındaki orandır.

<span class="mw-page-title-main">Yer değiştirme akımı</span>

Elektromanyetizmada yer değiştirme akımı elektrik yer değiştirme alanının değişim oranıyla tanımlanan bir niceliktir. Yer değiştirme akımının birimi akım yoğunluğu cinsinden ifade edilir. Yer değiştirme akımı gerçek akımlar gibi manyetik alan üretir. Yer değiştirme akımı hareketli yüklerin yarattığı bir elektrik akımı değil; zamana bağlı olarak değişim gösteren elektrik alanıdır. Maddelerde, atomun içerisinde bulunan yüklerin küçük hareketlerinin de buna bir katkısı vardır ki buna dielektrik polarizasyon denir.

<span class="mw-page-title-main">Enerji biçimleri</span>

Enerji biçimleri, iki ana grubu ayrılabilir: kinetik enerji ve potansiyel enerji. Diğer enerji türleri bu iki enerji türünün karışımdan elde edilir.

Elektromanyetizmada geçirgenlik, bir maddenin kendi içinde manyetik alan oluşabilmesini destekleyen bir ölçüdür. Bu yüzden, bir malzemenin mıknatıslanma derecesi, uygulanan manyetik alana olan cevabıdır. Manyetik geçirgenlik tipik olarak Yunan harfi µ ile gösterilir. Bu terim 1885 yılında Oliver Heaviside tarafından icat edildi. Manyetik geçirgenliğin tersi manyetik dirençtir.

Maxwell CGS ölçü sisteminde kullanılan bir ölçü birimidir. Kısaltması Mx tir. Birim adını elektromanyetikteki dört ünlü denklemi ortaya koyan ünlü İskoç fizikçi James Clerk Maxwell'den (1831-1879) alır. Maxwell manyetik akı birimidir. Manyetik akı manyetik akı yoğunluğu ile manyetik alan çizgilerinin dik olarak geçtiği yüzey alanın çarpımına eşittir. CGS sisteminde

Elektromanyetik sınır koşulları, elektromanyetik alanların iki malzeme arasındaki yüzeydeki ilişkilerini belirler. Yalıtkanlık sabiti ve/veya geçirgenlik sabitinin değiştiği arayüzlerde elektrik alan, elektrik akı yoğunluğu, manyetik alan ve manyetik akı yoğunluğunun değişimi ya da sürekliliği için farklı kurallar bulunmaktadır. Bu kurallar Maxwell denklemleri'nin integral gösterimleri ile türetilebilir.