İçeriğe atla

W ve Z bozonları

W± ve Z0 bozonları
BileşimTemel parçacık
AileBozon
Etkileşim(ler)Zayıf etkileşim
TeorileştirmeGlashow, Weinberg, Salam (1968)
KeşifUA1 ve UA2 deneyleri (1983)
KütleW: 80.398±0.25 GeV/c2[1]
Z: 91.1876±0.0021 GeV/c2[2]
Elektrik yüküW: ±1 e
Z: 0
Spin1

W ve Z bozonları, zayıf etkileşime aracılık eden temel parçacıklardır. Bu bozonların keşfi parçacık fiziğinin Standart Modeli için büyük bir başarının müjdecisi oldu.

W parçacığının adı, zayıf nükleer kuvvetten (İngilizce: weak nuclear force) gelir. Z parçacığı ise, yarı mizahi olarak, keşfedilmesi gereken son parçacık olarak düşünüldüğü için bu ismi alır. Konu ile ilgili bir başka açıklama ise, yükünün sıfır (zero) olmasından dolayı Z parçacığının bu şekilde isimlendirildiğini söyler.

Temel özellikler

W bozonunun iki türü +1 ve -1 elektrik yüklerine sahiptir. W + bozonu W - bozonunun antiparçacığıdır. Z bozonu (veya Z 0) elektriksel olarak yüksüzdür ve kendisinin antiparçacığıdır. Her üç parçacık da yaklaşık 3×10−25 s'lik yarı ömürleri ile çok kısa bir süre varlıklarını sürdürür. Bu yüzden bu parçacıklar OPAL dedektörü ile doğrudan gözlemlenemez, ancak bozunum ürünleri ölçülebilir.[3]

Bu bozonlar 80,447 ± 0.042 GeV/c2 ve 91.1876 ± 0.0021 GeV/c2[4] kütleleri ile temel parçacıklar arasında ağır sıklet olarak nitelendirilirler. W ve Z o parçacıkları bir protona göre 100 kat daha ağırdır ve ayrıca bütün bir demir atomundan da daha ağırdır. Bu bozonların kütleleri önemlidir; çünkü bunlar zayıf nükleer kuvvetin erimini sınırlar. Elektromanyetik kuvvet sınırsız erime sahiptir; çünkü bu kuvvetin bozonu (foton) kütlesizdir.

W bozonun kütlesi LEP ve Tevatron deneyleri ile tespit edildi. Tevatron'da W bozonu başlıca kuark antikuark yokoluşu ile üretilir.[5]

Her üç türün de spini 1'dir.

W + veya W - bozonlarının emisyonu, salımı (salınımı) yapan parçacığın elektrik yükünü 1 birim artırır veya azaltır, ayrıca spini de 1 birim değiştirir. Aynı şekilde bir W bozonu parçacığın neslini de değiştirir; örneğin garip kuarkı, yukarı kuarka dönüştürür. Z 0 parçacığın elektrik yükünü veya başka herhangi bir yükünü (acayiplik gibi) değiştirmez, sadece spin ve momentumda etkilidir. Bu yüzden o salınımı yapan parçacığın neslini veya çeşnisini asla değiştirmez.

Zayıf nükleer kuvvet

Beta bozunumunun Feynman diagramı

Fotonun elektromanyetik kuvvetin taşıyıcı parçacığı olması gibi W ve Z bozonları da zayıf nükleer kuvvete aracılık eden taşıyıcı parçacıklardır. W bozonu radyoaktif bozunumdaki rolü ile bilinir. Örneğin süpernova patlamaları için önemli bir işlem Kobalt-60 için beta bozunumu şöyledir:

Bu reaksiyon bütün Kobalt-60 çekirdeğini kapsamaz, reaksiyon onun 33 nötronundan sadece birini etkiler. Nötron, elektron ve nötrino yayımlayarak bir protona (beta parçacığı) dönüşür.

Nötron temel parçacık değildir; bir yukarı kuark ve iki aşağı kuarkın birleşiminden oluşur (udd). Gerçekte protonun uud formuna geçiş için aşağı kuarklardan biri beta bozunumunda etkileşime girerek yukarı kuarka dönüşür. En temel seviyede zayıf kuvvet tek kuarkın çesnisini değiştirir.

Bunu W-'nin bozunumu takip eder.

Kendisinin antiparçacığı olan Z bozonunun toplam kuantum sayısı sıfırdır. Parçacıklar arasındaki Z bozonu takasına nötral akım etkileşmesi adı verilir. Bu etkileşme parçacıklarda momentum transferi dışında etki bırakmaz. Beta bozunumundan farklı olarak nötral akım etkileşimlerinin gözlenmesi parçacık hızlandırıcılarında ve algılayıcılarında büyük çaplı araştırmalar gerektirir. Bu tür araştırmaların dünyada sadece birkaç yüksek enerji fiziği laboratuvarında yapılabilmesi mümkün olabilmektedir.

Öngörü

Bir çift W bozonunun takasını gösteren bir Feynman diagramı

1950'lerde kuantum elektrodinamiğinin olağanüstü başarısını takip eden süreçte, denemeler zayıf nükleer kuvvete benzer bir teorinin formüle edilmesi gerektiğini gösterdi. Bu durum, 1968 civarında Sheldon Glashow, Steven Weinberg ve Abdus Salam'ın elektromanyetizma ve zayıf etkileşimin birleşik teorisini ortaya attıklarında doruğa ulaştı. Glashow, Weinberg ve Salam bu çalışmaları ile 1979'da Nobel Fizik Ödülü'ne layık görüldüler.[6] Onların elektrozayıf teorisi, beta bozunumunu açıklamak için W bozonuna ek olarak ayrıca henüz gözlemlenmemiş olan Z bozonunun da varolması gerektiğini öngörüyordu.

Fotonlar kütlesiz iken W ve Z bozonlarının kütle sahibi olması elektrozayıf teorinin gelişimi yönündeki büyük engellerden biriydi. Bu parçacıklar SU(2) ayar teorisi tarafından doğru bir şekilde tanımlandı, ancak gauge teorisindeki bozonlar kütlesiz olmalıydı. Bu noktada fotonlar kütlesizdir; çünkü, elektromanyetizma U(1) gauge teorisi tarafından tanımlanır. W ve Z bozonlarına kütle kazandırılabilmesi için, SU(2) simetrisinin kırılmasını sağlayacak bir mekanizma gereklidir. Açıklamalardan biri 1960'ların sonunda Peter Higgs tarafından öne sürülen, Standart Model'in öngördüğü temel parçacıklara kütle kazandırmak amacıyla tasarımlanmış olan Higgs mekanizmasıdır.[7] Bu açıklama ayrıca yeni bir parçacık Higgs bozonunun da varlığını öngörüyor.

Zayıf etkileşimin SU(2) gauge teorisi, elektromanyetik etkileşim ve Higgs mekanizmasının kombinasyonu Glashow-Weinberg-Salam modeli olarak bilinir. Model bu günlerde geniş ölçüde parçacık fiziğinin Standart Modelinin destekçisi olarak kabul görüyor. 2008 itibarı ile Fermilab ve CERN'deki yoğun araştırmalara rağmen deneysel olarak henüz doğrulanamamış olan Higgs bozonu Standart modelin temel öngörüsü olarak varlığını sürdürmektedir.

Keşif

Avrupa Nükleer Araştırma Merkezi'nde sergilenen Gargamelle kabarcık odası

W ve Z parçacıklarının keşfi CERN'ün büyük başarı hikâyesidir.[8] İlk olarak 1973'te elektrozayıf teorinin tahmin ettiği gibi nötral akım etkileşimleri gözlemlendi.[9] Gargamelle adlı dev kabarcık odası, aniden hareket etmeye başlayan birkaç elektronun izini fotoğrafladı. Bu durum görünmeyen Z bozonunun değiş tokuşu ile meydana gelen elektron nötrino etkileşimi olarak yorumlandı. Nötrino başka türlü dedekte edilemez. Bu yüzden tek gözlenebilir etki etkileşim esnasında elektrona verilen momentumdur.

Bu parçacıkların keşfi onları üretebilecek kadar güçlü bir parçacık hızlandırıcının inşa edilmesini beklemek zorundaydı.[8] Bu şekilde uygun olan ilk makine, Ocak 1983'te Carlo Rubbia ve Simon van der Meer tarafından idare edilen bir dizi deney esnasında kesin W sinyallerinin gözlendiği Süper Proton Senkrotronuydu (SPS).[10] (Asıl deneyler birçok insanın işbirliği ile yapılan Rubbia liderliğindeki UA1 ve Darriulat liderliğindeki UA2 idi.) 20 ve 21 Ocak'ta CERN W bozonunun gözlendiğini anons etti.[9] UA1 birkaç ay sonra Mayıs 1983'te Z'yi buldu ve 27 Mayıs'ta parçacığın keşfi anons edildi.[9] 1984'te Rubbia ve van der Meer'e, muhafazakâr Nobel Vakfı için sıra dışı sayılabilecek bir adımla, vakit kaybedilmeden Nobel Fizik Ödülü verildi.[11] Bu aynı zamanda CERN'ün kazandığı ilk Nobel ödülüdür.[9] Amerikalı parçacık fizikçileri W bozonunun CERN'deki keşfine kadar herhangi bir gerçek rekabet hissetmemişlerdi. Yeni rekabet ortamı Avrupa ile ilişkiler sonsuza kadar değiştirdi.[12]

Notlar

  1. ^ Martin Grünewald (4 Ağustos 2003). "The LEP Electroweak Working Group". CERN. 3 Nisan 2008 tarihinde kaynağından arşivlendi. Erişim tarihi: 27 Nisan 2008. 
  2. ^ W.-M. Yao; ve diğerleri. (2012). "Gauge end Higgs Bosons". Particle Data Group. 12 Temmuz 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 27 Nisan 2008. 
  3. ^ Jonathan Couchman (4 Kasım 2002). "W Boson Decays". UCL High Energy Physics Group. 12 Şubat 2008 tarihinde kaynağından arşivlendi. Erişim tarihi: 8 Mayıs 2008. 
  4. ^ Jianrong Deng (2 Aralık 2004). "W± and Z Boson pair production" (PDF). Duke University. Erişim tarihi: 20 Nisan 2009. []
  5. ^ "First Measurement of the W-Boson Mass in Run II of the Tevatron" (PDF). Physicsl Review Letters. Cilt 99. 12 Ekim 2007. s. 4. doi:10.1103/PhysRevLett.99.151801. 4 Mart 2016 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 20 Nisan 2009. 
  6. ^ "Arşivlenmiş kopya". 3 Ağustos 2004 tarihinde kaynağından arşivlendi. Erişim tarihi: 29 Nisan 2008. 
  7. ^ "Arşivlenmiş kopya". 9 Kasım 2007 tarihinde kaynağından arşivlendi. Erişim tarihi: 27 Nisan 2008. 
  8. ^ a b "Twenty years ago: The spring of the W and Z". CERN. 12 Mayıs 2004. 18 Mart 2008 tarihinde kaynağından arşivlendi. Erişim tarihi: 8 Mayıs 2008. 
  9. ^ a b c d "Neutral currents and W and Z: a celebration". IOP. 9 Aralık 2003. 30 Aralık 2010 tarihinde kaynağından arşivlendi. Erişim tarihi: 8 Mayıs 2008. 
  10. ^ Gary Taubes (9 Ocak 2003). "Carlo Rubbia and the discovery of the W and the Z". IOP. 21 Ekim 2007 tarihinde kaynağından arşivlendi. Erişim tarihi: 8 Mayıs 2008. 
  11. ^ "Arşivlenmiş kopya". 3 Ağustos 2004 tarihinde kaynağından arşivlendi. Erişim tarihi: 28 Nisan 2008. 
  12. ^ Robert P Crease (1 Eylül 2004). "CERN, the US and the W". IOP. 18 Mart 2008 tarihinde kaynağından arşivlendi. Erişim tarihi: 8 Mayıs 2008. 

İlgili Araştırma Makaleleri

Parçacık fiziğinde, bozonlar Bose-Einstein yoğunlaşmasına uyan parçacıklardır; Satyendra Nath Bose ve Einstein'a atfen isimlendirilmişlerdir. Fermi-Dirac istatistiklerine uyan fermiyonların tersine, farklı bozonlar aynı kuantum konumunu işgal eder. Böylece, aynı enerjiye sahip bozonlar uzayda aynı mekânı işgal edebilirler. Bu nedenle her ne kadar parçacık fiziğinde her iki kavram arasındaki ayrım kesin belirgin değilse de, fermiyonlar genelde madde ile bileşikken, bozonlar sıklıkla güç taşıyıcı parçacıklardır.

Temel etkileşimler veya Temel kuvvetler, fiziksel sistemlerde daha temel etkileşimlere indirgenemeyen etkileşimlerdir. Bilinen dört temel etkileşim vardır. Bunlar uzun mesafelerde etkileri olabilen kütleçekimsel, elektromanyetik etkileşimler ve atomaltı mesafelerde etkili olan güçlü nükleer ve zayıf nükleer etkileşimlerdir. Her biri bir alan dinamiği olarak anlaşılmalıdır. Bu dört etkileşim de matematiksel açıdan bir alan olarak modellenebilir. Kütleçekim, Einstein'ın genel görelilik kuramı tarafından tanımlanan uzay-zamanın eğriliğe atfedilirken diğer üçü ayrı kuantum alanlar olarak nitelendirilir ve etkileşimlerine Parçacık fiziğinin Standart Modeli tarafından tanımlanan temel parçacıklar aracılık eder.

Fermiyon, parçacık fiziğinde, Fermi-Dirac istatistiğine uyan parçacıktır. Başka bir deyişle, Enrico Fermi ve Paul Dirac'ın gösterdiği üzere, Bose-Einstein istatistiğine sahip bozonların aksine fermiyonlar, belirtilen zamanda sadece bir kuantum durumuna karşılık gelebilen parçacıklardır. Eğer iki ayrı fermiyon uzayda aynı yerde tanımlanmışsa her bir fermiyonun özelliği birbirinden farklı olmak zorundadır. Örnek olarak, iki elektron bir çekirdeğin etrafında aynı orbitalde bulunacaklarsa, bu kez aynı spin durumunda olamazlar ve her orbitalde elektronun biri yukarı diğeri aşağı spin durumundadır.

<span class="mw-page-title-main">Parçacık fiziği</span>

Parçacık fiziği, maddeyi ve ışınımı oluşturan parçacıkların doğasını araştıran bir fizik dalıdır. Parçacık kelimesi birçok küçük nesneyi andırsa da, parçacık fiziği genellikle gözlemlenebilen, indirgenemez en küçük parçacıkları ve onların davranışlarını anlamak için gerekli temel etkileşimleri araştırır. Şu anki anlayışımıza göre bu temel parçacıklar, onların etkileşimlerini de açıklayan kuantum alanlarının uyarımlarıdırlar. Günümüzde, bu temel parçacıkları ve alanları dinamikleriyle birlikte açıklayan en etkin teori Standart Model olarak adlandırılmaktadır. Bu yüzden günümüz parçacık fiziği genellikle Standart Modeli ve onun olası uzantılarını inceler.

<span class="mw-page-title-main">Kuark</span> Temel parçacık türü

Kuark, bir tür temel parçacık ve maddenin temel bileşenlerinden biridir. Kuarklar, bir araya gelerek hadronlar olarak bilinen bileşik parçacıkları oluşturur. Bunların en kararlıları, atom çekirdeğinin bileşenleri proton ve nötrondur. Renk hapsi olarak bilinen olgudan ötürü kuarklar asla yalnız bir şekilde bulunmaz, yalnızca baryonlar ve mezonlar gibi hadronlar dahilinde bulunabilir. Bu sebeple kuarklar hakkında bilinenlerin çoğu hadronların gözlenmesi sonucunda elde edilmiştir.

<span class="mw-page-title-main">Standart Model</span>

Standart Model, gözlemlenen maddeyi oluşturan, şimdiye dek bulunmuş temel parçacıkları ve bunların etkileşmesinde önemli olan üç temel kuvveti açıklayan kuramdır.

Süper simetri, parçacık fiziğinde uzay-zaman simetrisinin karşılığıdır. Bu iki temel parçacıktan oluşur.

<span class="mw-page-title-main">Higgs bozonu</span> atom altı parçacık

Higgs bozonu; Peter Higgs, Gerald Guralnik, Richard Hagen, Tom Kibble, François Englert ve Robert Brout tarafından Standart Model'deki fermiyonlara kütle kazandırmak için varlığı öne sürülmüş, spini 0 (sıfır) olan parçacık. H veya h olarak kısaltılır. Aralık 2011'de o zamanlar iki ana deneyin sözcüleri birbirlerinden bağımsız sonuçlara dayanarak Higgs parçacığının 125 GeV/c2 değerinde bir kütleye sahip olabileceğini belirtti. Ayrıca yaptıkları açıklamada 115–130 GeV/c2 arası hariç Higgs'in bulunmayacağı diğer kütle aralıklarının önemli ölçüde elendiğini belirttiler. BHÇ'nin kesin bir sonuç için gerekli cevabı 2012'nin sonunda vereceği söylendi. 22 Haziran 2012'de CERN, yapılan deneylerin son durumu hakkında bir seminer verileceğini duyurdu. 28 Haziran 2012 civarlarında parçacığın bulunduğu yönünde açıklamaların geleceği medyada yayılmaya başladı fakat bunun "sadece güçlü bir sinyal" mi yoksa resmi bir keşif mi olacağı belirsizdi.

Parçacık fiziğinde şu anda bilinen ve kuramsal olan temel parçacıkları ve bu parçacıklarla oluşturulabilen bileşik parçacıkları içeren listedir.

<span class="mw-page-title-main">Pion</span>

Parçacık fiziğinde pion π0, π+ ve π'den oluşan üç atom atomaltı parçacığın ortak adıdır. Pionlar en hafif mezonlardır ve güçlü nükleer kuvvetin düşük enerjili durumlarını açıklamakta önemli bir rolü vardır.

<span class="mw-page-title-main">Temel parçacık</span> Başka parçacıklardan oluştuğu bilinmeyen parçacıklar.

Temel parçacıklar, bilinen hiçbir alt yapısı olmayan parçacıklardır. Bu parçacıklar evreni oluşturan maddelerin temel yapıtaşıdır. Standart Model'de kuarklar, leptonlar ve ayar bozonları temel taneciklerdir.

Üst kuark, parçacık fiziğinde Standart Model'de tanımlanan bir parçacık. +2/3 elektrik yüküne sahip üçüncü kuşak kuarktır. 171,2 GeV/c2 kütleye sahip temel parçacık.

<span class="mw-page-title-main">Carlo Rubbia</span> İtalyan fizikçi

Carlo Rubbia, İtalyan Cumhuriyeti Liyakat Nişanı, CERN'de W ve Z parçacıklarının keşfindeki büyük katkılarından dolayı 1984 Nobel Fizik Ödülünü, Simon van der Meer ile paylaşan İtalyan parçacık fizikçisi ve mucit.

Preonlar parçacık fiziğinde, kuarklar ve leptonların altparçacıkları olan nokta parçacıklardır. Terim 1974’te, Jogesh Pati ve Muhammed Abdüsselam tarafından oluşturulmuştur. Preon modellerine olan ilgi, 1980’lerde zirve noktasına ulaşmıştır ancak parçacık fiziği Standart Model'i, fiziğin kendisini en başarılı şekilde tanımlamaya devam ettiğinden ve lepton ile kuark kompozitleri hakkında hiçbir deneysel veri bulunmadığından dolayı bu ilgi azalmıştır.

<span class="mw-page-title-main">Higgs mekanizması</span>

Higgs mekanizması, parçacık fiziğinde ayar bozonlarının kütle özelliklerinin üretim mekanizmasını açıklaması açısından önemlidir.

Kuantum bilinmezliği, bir kuantum alan teorisinde, şarj taraması, klasik teorinin gözlemlenebilir "yeniden normalize" şarj değerini kısıtlayabilir. Renormalize değeri sadece izin verilen değer sıfırsa, teorisi "önemsiz" ya da etkileşmeyen olmayan şeklinde söylenir. Bir kuantum alan teorisi olarak gerçekleştiği zaman, bu şaşırtıcı bir şekilde, etkileşim parçacıkları tanımlamak için görünen bir klasik teori, serbest parçacıkların etkileşimde olmayan bir "önemsiz" teori haline gelebilir. Bu olgu, kuantum saçmalığı olarak adlandırılır. Güçlü kanıtlar, sadece sayısal Higgs bozonu ile ilgili bir alan teorisi, uzay-zaman boyutlarının önemsiz olduğu fikrini desteklemektedir ama genel olarak bilinmemektedir Higgs bozonu yanında diğer parçacıkları içeren gerçekçi modeller için bir durumdur. Çünkü Higgs bozonu, parçacık fiziğinin standart modelinde merkezi bir rol oynar, Higgs modellerinde önemsizlik sorusu büyük önem taşımaktadır. Bu Higgs önemsizliği, quantum elektro dinamiklerdeki Landau kutup problemine benzer ki bu quantum teorisi, hiçbir etkileşim olmadığı sürece renormalize değer, sıfıra ayarlanır. Kuantum teorisi çok yüksek bir ivme de tutarsız ölçeklerde olabilir. Kuantum elektrodinamiği Landau kutup problemi ile benzerdir. Landau kutup sorusu genellikle tutarsızlık görünür, erişilemeyecek büyük ölçekli ivme kuantum elektrodinamiği için küçük bir akademik ilgi olarak kabul edilir. Ancak bir "önemsiz" teori tutarsızlıkları gibi, LHC'de deney çabaları erişilebilir olabilir. İvme ölçeği olarak başlangıç düzeyindeki ölçeğinin Higgs bozonu içeren teoriler de söz konusu değildir. Bu Higgs teorileri ise, kendisi ile Higgs parçacığının etkileşimleri elektron ve müon olanlar gibi, W ve Z bozonlarının kitleleri yanı sıra lepton kitleleri oluşturmak için olumludur. Böyle standart model olarak parçacık fiziği gerçekçi modellerin önemsizlik sorunlarından muzdarip, bir başlangıç seviyesi ölçeği Higgs parçacığının değiştirilmesi veya terk edilmesi gerekebilir.

<span class="mw-page-title-main">Elektrozayıf etkileşim</span>

Parçacık fiziğinde elektrozayıf etkileşim, doğanın bilinen iki veya dört temel etkileşiminin birleşimin bir tanımıdır: elektromanyetizm ve zayıf etkileşim. Her gün düşük enerjilerde, bu iki kuvvet çok farklı oluşsa da, teori modelleri aynı kuvvetin iki farklı etkisi gibidir. Yukarıdaki birleştirme enerjisi, yaklaşık 100 GeV, tek bir elektrozayıf kuvvet oluşturabilir. Bu yüzden, eğer evren yeterince sıcaksa (Big Bang'den kısa bir sonra olan bir sıcaklık ortalama 1015 K), elektromanyetik kuvvet ve zayıf kuvvet birleşmiş bir elektrozayıf kuvvete dönüşür. Elektrozayıf dönem boyunca, zayıf kuvvet güçlü kuvvetten ayrılır. Kuark dönem boyunca, elektrozayıf kuvvet elektromanyetik ve zayıf kuvvetten ayrılır.

Parçacık fiziğinde, vektör bozon, spini 1' e eşit olan bozondur.Standart Modelde temel parçacık olarak değerlendirilen vektör bozonlar ayar bozonlarıdır.Ayar bozonları, elektromagnetizmanın fotonlarının, zayıf etkileşimlerin W ve Z bozonlarının temel etkileşimlerinin kuvvet taşıyıcılarıdır. Bazı bileşik parçacıklar vektör bozondur. Misal, bütün vektör mezonlar vektör bozondur.

Yüklü akım etkileşimi, atom altı parçacıkların zayıf kuvvet yoluyla etkileşime girme yollarından biridir.
W+
ve
W-
bozonları
buna aracılık eder.

Parçacık fiziğinde, küçük Higgs modelleri, Higgs bozonunun TeV enerji ölçeğinde bazı küresel simetri kırılmalarından kaynaklanan pseudo-Goldstone bozonu olduğu fikrine dayanmaktadır. Küçük Higgs modellerinin amacı, elektrozayıf simetri kırılmasından sorumlu Higgs bozon(lar)ının kütlesini stabilize etmek için bu tür yaklaşık küresel simetrilerin kendiliğinden kırılmasını kullanmaktır.