
İstatistik veya sayım bilimi, belirli bir amaç için veri toplama, tablo ve grafiklerle özetleme, sonuçları yorumlama, sonuçların güven derecelerini açıklama, örneklerden elde edilen sonuçları kitle için genelleme, özellikler arasındaki ilişkiyi araştırma, çeşitli konularda geleceğe ilişkin tahmin yapma, deney düzenleme ve gözlem ilkelerini kapsayan bir bilimdir. Belirli bir amaç için verilerin toplanması, sınıflandırılması, çözümlenmesi ve sonuçlarının yorumlanması esasına dayanır. Bu çerçevede yapılan işlemlerin tümüne sayımlama denir.

Olasılık kuramı ve istatistik bilim dallarında t-dağılımı ya da Student'in t dağılımı genel olarak örneklem sayısı veya sayıları küçük ise ve anakütle normal dağılım gösterdiği varsayılırsa çıkartımsal istatistik uygulaması için çok kullanılan bir sürekli olasılık dağılımıdır. Çok popüler olarak tek bir anakütle ortalaması için güven aralığı veya hipotez sınaması ve iki anakütle ortalamasının arasındaki fark için güven aralığı veya hipotez sınamasında, yani çıkarımsal istatistik analizlerde, uygulama görmektedir.

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.
İstatistik bilimi için mod bir veri kümesi içinde en sık görülen değerdir. Tepedeğer olarak da adlandırılır. Bazı kullanım alanlarında, özellikle eğitim alanında, örnek veriler çok kere puan olarak anılmakta ve örnek mod değerine ise mod puanı adı verilmektedir.
İstatistiksel terimler, kavramlar ve konular listesi matematik biliminin çok önemli bir alt-bölümü olan istatistik biliminde içeriğinde bulunan konuların çok ayrıntılı olarak sınıflandırılması ile ortaya çıkarılmıştır. Milletlerarası İstatistik Enstitüsü bir enternasyonal bilim kurumu olarak istatistik bilimi konu ve terimlerini bir araya toplayıp 28 bilim dilinde karşılıklı olarak yayınlamıştır. Bu uğraşın sonucunun milletlerarası bilim camiasının büyük başarılarından biri olduğu kabul edilmektedir. Ortaya çıkartılan, istatistik bilimi içinde kullanılan ve bu bilime ait özel kavramların ve terimlerin listesi, tam kapsamlı olma hedeflidir ve böylelikle istatistik bilimi için bir Türkçe yol haritası yapılmış olmaktadır.
Rassal değişken kavramının geliştirilmesi ile, sezgi yoluyla anlaşılan şans kavramı, soyutlaştırarak teorik matematik analiz alanına sokulmuş ve bu geliştirilen matematik kavram ile olasılık kuramı ve matematiksel istatistiğin temeli kurulmuştur.
Bir olasılık dağılımı bir rassal olayın ortaya çıkabilmesi için değerleri ve olasılıkları tanımlar. Değerler olay için mümkün olan tüm sonuçları kapsamalıdır ve olasılıkların toplamı bire eşit olmalıdır. Örneğin, bir rassal olay olarak madeni paranın tek bir defa havaya atılıp yere düşmesi ele alınsın; değerler 'yazı' veya 'tura' veya bunlar isimsel değişken ölçeğinde ifade edilirse 0 (yazı) veya 1 (tura) olur; olasılıklar ise her iki değer için ½ olacaktır. Böylece madeni bir paranın tek bir defa atılma olayı için iki değer ve ilişkili iki olasılık bu rassal olayın olasılık dağılımı olur. Bu dağılım ayrık olasılık dağılımıdır; çünkü sayılabilir şekilde ayrı ayrı sonuçlar ve bunlara bağlı olan pozitif olasılıklar vardır.

Olasılık kuramı ve istatistik bilim kollarında, F-dağılımı bir sürekli olasılık dağılımdır. Bu dağılımı ilk bulan istatistikçiler olan R.A. Fisher veGeorge W. Snedecor adlarına bağlı olarak Snedecor'un F dağılımı veya Fisher-Snedecor dağılımı olarak da anılmaktadir.

Olasılık kuramı ve istatistik bilim dallarında Weibull dağılımı ) bir sürekli olasılık dağılımı olup olasılık yoğunluk fonksiyonu şöyle ifade edilir:


Sürekli tekdüze dağılım (İngilizce: continuous uniform distribution) olasılık kuramı ve istatistik bilim dallarında, her elemanı, olasılığın desteklendiği aynı büyüklükteki aralık içinde bulunabilir, her sürekli değer için aynı sabit olasılık gösteren bir olasılık dağılımları ailesidir. Desteklenen aralık iki parametre ile, yani minimum değer a ve maksimum değer b ile, tanımlanmaktadır. Bu dağılım kısa olarak U(a,b) olarak anılır.
Olasılık kuramı ve istatistik bilim kollarında, multinom dağılımı binom dağılımının genelleştirilmesidir.
Olasılık teorisi ya da ihtimaliyet teorisi rastgele olayların analizi ile ilgilenen bir matematik bilim dalıdır. Olasılık teorisinin ana ögeleri rassal değişkenler, saf rassal süreçler, olaylar olarak sayılabilir. Bunlar ya tek olarak ortaya çıkan veya bir zaman dönemi içinde gelişerek meydana gelen, ilk görünüşü rastgele bir şekilde olan deterministik olmayan olayların veya ölçülebilir miktarların matematiksel soyutlamalarıdır. Bir madeni parayı yazı-tura denemesi için havaya atmak veya bir zarı atmak ile ortaya çıkan sonuç ilk bakışta rastgele bir olay olarak görülebilirse bile eğer birbirini takip eden rastgele olaylar tekrar tekrar ortaya çıkartılırsa incelenebilecek ve tahmin edilebilecek belirli bir istatistiksel seyir takip ettikleri görülecektir. Bu türlü olaylar ve sonuçların seyirlerini betimleyen iki temsilci matematiksel sonuç büyük sayılar yasası ve merkezsel limit teoremidir.
Olasılık kuramı içinde bir olasılık dağılımı, eğer yığmalı dağılım fonksiyonu bir sürekli fonksiyon ise dağılım da sürekli olarak anılır. Bu demektir ki incelenmekte olan dağılımı gösteren X rassal değişkeni için; tüm reel sayı olan a için
- Pr[X = a] = 0
Anderson-Darling sınaması, istatistik bilim dalında, bir parametrik olmayan istatistik sınaması olup örneklem verilerinin belirli bir olasılık dağılımı gösterip göstermediğini sınamak için, yani uygunluk iyiliği sınaması için, kullanılmaktadır. Bu sınama ilk defa 1952'de Amerikan istatistikçileri T.W.Anderson Jr. ile D.A.Darling tarafından yayınlanmıştır. Bu sınama Kolmogorov-Smirnov sınamasının değiştirilmesi ve olasılık dağılımının kuyruklarına daha çok ağırlık verilmesi ile ortaya çıkartılmıştır.
Betimsel istatistikte çeyrekler açıklığı sıralanmış bir veri dizisinin orta yarısını (%50'sini) kapsayan ve üçüncü dörtte birlik ve birinci dörtte birlik aralığını veya farkını gösteren bir istatistiksel yayılma ölçüsüdür. Birinci dörtte birlik sıralanmış veri dizisinin ilk %25'inden büyük ve üçüncü dörtte birlik sıralanmış veri dizisinin %25'inden daha küçük olduğu için, bu iki dörtte birlik arasında kalan veri yüzdesi %50'dir. Çeyrekler açıklığı ölçüm birimi veri ölçüm birimi ile aynıdır. İngilizcesi IQR'dir.
Matematik bilimi içinde moment kavramı fizik bilimi için ortaya çıkartılmış olan moment kavramından geliştirilmiştir. Bir bir reel değişkenin reel-değerli fonksiyon olan f(x)in c değeri etrafında ninci momenti şöyle ifade edilir:

İstatistik bilim dalında, Kolmogorov-Smirnov (K-S) sınaması parametrik olmayan istatistik olup Andrey Kolmogorov ve Nikolai Smirnov adlarındaki iki Sovyet bilim insanı tarafından oluşturulmuştur.
Normalleştirme sabiti, olasılık kuramı ve matematiğin diğer çeşitli alanlarında ortaya çıkar. Örneğin normal dağılımın normalleştirme sabitini hesaplamak için Gauss integrali kullanılabilir.

Matematiksel istatistik, istatistiksel veri toplama tekniklerinin aksine, matematiğin bir dalı olan olasılık teorisinin istatistiğe uygulanmasıdır. Bunun için kullanılan özel matematiksel teknikler arasında matematiksel analiz, doğrusal cebir, stokastik analiz, diferansiyel denklemler ve ölçü teorisi bulunur.

Bayesci istatistik, Bayesyen istatistik veya Bayesgil istatistik, olasılığın bir olaya olan inancın bir derecesini ifade ettiği Bayesci olasılık yorumuna dayanan istatistik alanındaki bir teoridir. İnanç derecesi, önceki deneylerin sonuçları gibi olay hakkında önceki bilgilere veya olayla ilgili kişisel inançlara dayanabilir. Bu, olasılığı birçok denemeden sonra bir olayın göreceli sıklığının sınırı olarak gören sıklıkçı olasılık yorumlaması gibi bir dizi başka olasılık yorumundan farklıdır.