İçeriğe atla

Vieta formülleri

Matematik'te, özellikle de cebirde, François Viète'nin adıyla anılan Viète'nin formülleri, bir polinomun kökleriyle katsayıları arasındaki ilişkiyi veren formüllerdir.

Vieta formülleri

Eğer

derecesi olacak şekilde bir polinom ve bu polinomun katsayıları karmaşık sayılardan oluşuyorsa (yani sayıları kompleks ve sıfırdan farklı), Cebirin Temel Teoremi'ne göre (farklı ya da çakışık) karmaşık köke sahiptir, bu kökler: Bu kökler ve katsayılar arasındaki Viète Formülleri aşağıdaki gibidir:

Anlamı, 'in tane farklı köklerinin oluşturduğu tüm altkümelerinin çarpımı 'ya eşittir, diğer bir deyişle (köklerin oluşturduğu her altkümenin bir defa kullanılmasının garantilemek için, çarpımlarını artan indise göre sıralayarak):

şeklinde her yazabiliriz.

İkinci dereceden bir bilinmeyenli cebirsel bir denklemin kökleri ve katsayıları arasındaki ilişki

İkinci dereceden bir bilinmeyenli denklemler genel olarak şeklinde ifade edilebilir. Vièta'ya göre, denkleminin kökleri ve için kökler toplamı ve kökler çarpımı aşağıdaki kuralları sağlamaktadır:

Bu denklemlerden ilki P nin minimum ya da maksimum değerlerini bulmada kullanılabilir.

Vieta formüllerinin ispatı

Viète'nin Formülleri aşağıdaki eşitliği yazıp, polinomların eşitliği kullanılarak gösterilebilir:

( bu polinomun kökleri olduğu için denklemin sağındaki ifade doğrudur), sağ taraftaki ifadeleri çarpı, 'in aynı dereceli terimlerini bir araya toplayarak gösterebilir.

Ayrıca bakınız

Kaynakça

  • Erzen, Ömer R. (2008). Cebirsel Bir Denklemin Kökleriyle Katsayıları Arasındaki Iliskinin Incelenmesi, 19 sf., Çukurova Üniversitesi, Adana.
  • Vinberg, E. B. (2003). A course in algebra. American Mathematical Society, Providence, R.I.
  • Djukić, Dušan, et al. (2006). The IMO compendium: a collection of problems suggested for the International Mathematical Olympiads, 1959-2004. Springer, New York, NY.

İlgili Araştırma Makaleleri

Matematikte cebirin temel teoremi karmaşık değişkenli polinomların köklerinin varlığıyla ilgili temel bir sonuçtur. D'Alembert-Gauss teoremi olarak da anılmaktadır.

<span class="mw-page-title-main">Riemann toplamı</span>

Matematikte, Riemann toplamı genellikle fonksiyon eğrisinin altında kalan bölgenin yaklaşık alanıdır. Bu toplama, Alman matematikçi Bernhard Riemann'ın soyadı verilmiştir.

<span class="mw-page-title-main">Polinom</span> değişkenlerin çarpımlarının toplamı, değişkenlerin gücü ve katsayılar

Matematikte, bir polinom belirli sayıda bağımsız değişken ve sabit sayıdan oluşan bir ifadedir. Polinom kendi içinde toplama, çıkarma, çarpma ve negatif olmayan sayının üssünü alma işlemlerini kullanır. Örnek olarak tek bilinmeyenli bir polinom olan x2 − 4x + 7, ikinci dereceden oluşan bir polinomdur. Diğer bir örnek olarak, x2 − 4/x + 7x3/2 bir polinom değildir, çünkü polinomlarda terimlerin derecelerinin doğal sayı olma zorunluluğu vardır 2. terimde x′i ele alan bir bölme işlemi x'in derecesini negatif yapmaktadır ve 3. terim doğal sayı olmayan bir derece içermektedir (3/2).

<span class="mw-page-title-main">Matris (matematik)</span>

Matematikte matris veya dizey, dikdörtgen bir sayılar tablosu veya daha genel bir açıklamayla, toplanabilir veya çarpılabilir soyut miktarlar tablosudur. Dizeyler daha çok doğrusal denklemleri tanımlamak, doğrusal dönüşümlerde çarpanların takibi ve iki parametreye bağlı verilerin kaydedilmesi amacıyla kullanılırlar. Dizeylerin toplanabilir, çıkartılabilir, çarpılabilir, bölünebilir ve ayrıştırılabilir olmaları, doğrusal cebir ve dizey kuramının temel kavramı olmalarını sağlamıştır.

<span class="mw-page-title-main">Doğrusal denklem</span>

Doğrusal ya da lineer denklem terimlerinin her biri ya birinci dereceden değişken ya da bir sabit olan denklemlerdir. Böyle denklemlere "doğrusal" denmesinin nedeni içerdikleri terim ve değişkenlerin sayısına bağlı olarak (n) düzlemde ya da uzayda bir doğru belirtmesindendir. Doğrusal denklemlerin en yaygını bir ve değişkeni içeren aşağıdaki formdur:

<span class="mw-page-title-main">İkinci dereceden denklemler</span>

İkinci dereceden denklemler, derecesi 2 olan polinomların oluşturduğu denklemlerdir. Bu denklemlerin genel formu aşağıdaki gibidir

<span class="mw-page-title-main">Diskriminant</span>

Diskriminant matematik biliminde bir cebirsel kavramdır. Gerçel katsayılı ikinci derece polinom denklemlerin çözümü için kullanılır. İkinci dereceden büyük herhangi bir polinomun köklerinin bulunması için de bu kavram, köklerin toplamı için gereken ifadenin ve köklerin çarpımı için gereken ifadenin bulunması suretiyle genişletilmiştir. Bir polinom için çoklu köklerin varlığı veya yokluğu için gereken koşul da diskriminantın varlığı ve yokluğu ile bulunabilmektedir.

<span class="mw-page-title-main">Cebirsel sayılar</span>

Cebirsel sayılar, rasyonel katsayıları olan tek değişkenli sıfırdan farklı bir polinomun kökü olarak ifade edilebilen sayılardır. Mesela, altın oran, , cebirsel bir sayı örneğidir çünkü x2x − 1 polinomunun bir köküdür. Bu durumda, söz konusu polinomun değerinin sıfıra eşitlendiği x değeridir. Diğer bir örnek olarak, biçimindeki karmaşık sayı, x4 + 4 polinomunun bir kökü olduğundan dolayı cebirsel sayı olarak kabul edilir.

<span class="mw-page-title-main">François Viète</span> Fransız matematikçi (1540 – 1603)

François Viete Fransız matematikçi. Adıyla anılan Vieta formüllerini keşfetmiştir.

İstatistik bilim dalında ağırlıklı ortalama betimsel istatistik alanında, genellikle örneklem, veri dizisini özetlemek için bir merkezsel konum ölçüsüdür. En çok kullanan ağırlıklı ortalama tipi ağırlıklı aritmetik ortalamadır. Burada genel olarak bir örnekle bu kavram açıklanmaktadır. Değişik özel tipli ağırlıklar alan özel ağırlıklı aritmetik ortalamalar bulunmaktadır. Diğer ağırlıklı ortalamalar ağırlıklı geometrik ortalama ve ağırlıklı harmonik ortalamadir. Ağırlıklı ortalama kavramı ile ilişkili teorik açıklamalar son kısımda ele alınacakdır.

<span class="mw-page-title-main">Fourier serisi</span>

Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.

<span class="mw-page-title-main">Doğrusal denklem dizgesi</span>

Doğrusal denklem dizgesi, birkaç tane aynı tip değişkenleri içeren birkaç tane doğrusal denklemlerin oluşturduğu topluluktur. Örneğin:

<span class="mw-page-title-main">Kuvvet serisi</span>

Matematikte kuvvet serisi

<span class="mw-page-title-main">Kök (matematik)</span>

Matematikte gerçel, karmaşık veya daha genel bir anlamda vektör değerli bir fonksiyonun kökü, fonksiyonun tanım kümesinde bulunan ve fonksiyonun 0 değerini aldığı noktalardır. Yani, eğer bir V kümesinden bir W vektör uzayına tanımlı bir fonksiyonu

Matematiksel analizde Legendre fonksiyonları, aşağıdaki Legendre diferansiyel denkleminin çözümleridir.

 ;

Üçüncü dereceden denklemler, derecesi 3 olan polinomların oluşturduğu denklemlerdir. Bu denklemlerin genel formu aşağıdaki gibidir

<span class="mw-page-title-main">Bağ interpolasyonu</span>

Spline fonksiyonu, farklı parçaların birleştirilmesi ile oluşan sürekli karakterli fonksiyonlara verilen addır. Parçalar farklı eğilimli doğru parçaları olabilecekleri gibi, doğrusal olmayan fonksiyonlar da olabilirler. Fonksiyon parçaların birleşme noktalarında kırılma gösterir. Yapısal değişikliğin incelenmesinde kullanılır.

<span class="mw-page-title-main">Bézout teoremi</span> aciklama

Bézout teoremi, cebirsel geometride n değişkenli n polinomun ortak sıfırlarının sayısı ile ilgili bir ifadedir. Orijinal biçiminde teorem, genel olarak ortak sıfırların sayısının, polinomların derecelerinin çarpımına eşit olduğunu belirtir. Adını Fransız matematikçi Étienne Bézout'dan almıştır.

<span class="mw-page-title-main">Kuadratik formül</span>

Temel cebirde, kuadratik formül, bir ikinci dereceden denklemin köklerini (çözümlerini) bulan bir formüldür. İkinci dereceden bir denklemi çözmek için ikinci dereceden formülü kullanmak yerine çarpanlara ayırma, tam kareye tamamlama, grafik çizme ve diğerleri gibi başka yollar da vardır.

Matematikte, Ruffini'nin kuralı, bir polinomun Öklid bölünmesinin x – r biçimindeki bir denklem ile kağıt kalemle hesaplanması için geliştirilmiş bir yöntemdir. 1804 yılında Paolo Ruffini tarafından tanımlanmıştır. Kural, bölenin doğrusal bir bölen olduğu özel bir sentetik bölme durumudur.