Matematik, fizik ve mühendislikte, Öklid vektörü veya kısaca vektör sayısal büyüklüğü ve yönü olan geometrik bir objedir. Vektör, genellikle bir doğru parçası ile özdeşleştirilir. Bir başlangıç noktası A ile bir uç noktası B'yi birleştiren bir ok şeklinde görselleştirilir ve ile belirtilir.
Matematikte çapraz çarpım veya yöney çarpımı üç boyutlu uzayda iki yöney (vektör) ile yapılan bir işlemdir. Bu çarpımın sonucunda başka bir yöney elde edilir ve bu yöney çapraz çarpımda kullanılan iki yöneye de diktir. Aynı zamanda elde edilen yöney çapraz çarpımda kullanılan iki yöneyin oluşturduğu düzleme dik bir yöneydir. Bu çarpımın çapraz ismi gösterimde kullanılan "×" sembolünden gelmektedir ve her bir vektör sıralı bir şekilde diğeri ile çarpılmakta ve elde edilen yöney bu çarpan yöneylerden biri olmaktadır,yani çaprazlama yapılan modüler bir çarpım biçimidir.Yöney çarpımı ismi de işlemin sonucunda başka bir yöneyin elde edilmesinden gelmektedir. Bu işlemin matematik, fizik ve mühendislikte birçok uygulaması vardır.
Vektör uzayı veya Yöney uzayı, matematikte ölçeklenebilir ve eklenebilir bir nesnelerin (vektörlerin) uzayına verilen isimdir. Daha resmî bir tanımla, bir vektör uzayı, iki elemanı arasında vektör toplamasının ve skaler denilen sayılarla çarpımın tanımlı olduğu ve bunların bazı aksiyomları sağladığı kümedir. Skalerler, rasyonal veya reel sayılar kümesinden gelebilir, ama herhangi bir cisim üzerinden bir vektör uzayı oluşturmak mümkündür. Vektör uzayları, skalerlerin geldiği cisime göre reel vektör uzayı, kompleks vektör uzayı veya genel bir cisim üzerinden K vektör uzayı şeklinde adlandırılır.
Alan, fizik kuramlarında kullanılan, matematikteki cebirsel alanın tüm özelliklerini taşıyan terim. Genellikle bu etki 100 nanometre ve daha küçük skalalarda etkili olur. Bu etki nanoteknolojiyle aynı ölçeğe denk gelir. Bir alan mekan ve zaman içinde her bir nokta için bir değeri olan bir fiziksel miktardır. Örneğin, hava durumu, rüzgâr hızı uzayda her nokta için bir vektör atayarak tarif edilmektedir. Her bir vektör bu noktada hava hareketinin hızını ve yönünü temsil eder.
Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.
Gerçel analiz ya da bilinen diğer ismiyle reel analiz, matematiksel analizin bir dalıdır. Bu dal, gerçek sayılar ve bu sayılardan türetilen yapılarla ilgili temel kavramları ele alır. Ana konuları arasında diziler, seriler, limitler, süreklilik, türev, integral ve fonksiyon dizileri yer alır. Gerçek analizin incelenmesi, matematiğin diğer alanları için temel araçlar ve yöntemler sağlar.
Matematikte bir çizgi integrali, integrali alınan fonksiyonun bir eğri boyunca değerlendirildiği integraldir. Çeşitli farklı çizgi integralleri kullanılmaktadır. Kapalı eğrinin kullanıldığı durumlarda integrale kontür integrali denildiği de olmaktadır.
Matematikte fonksiyon uzayı bir X kümesinden bir Y kümesine tanımlı fonksiyonların oluşturduğu kümeye verilen bir addır. Fonksiyonlar kümesi yerine fonksiyon uzayı denilmesinin nedeni matematiğin kendi içindeki uygulamalarında bu kümenin genellikle topolojik uzay veya vektör uzayı olarak ortaya çıkmasıdır.
Matematiğin vektör uzaylarıyla ve bu uzayların üzerinde tanımlı operatörlerle uğraşan bir alt dalı. Kökleri fonksiyon uzayları kuramının geliştirilmesine; hatta diferansiyel ve integral denklemlerinin çalışılmasına kadar gitmektedir. Özelde mesela Fourier dönüşümü gibi fonksiyon dönüşümlerinin çalışılmasında da kullanılmıştır. Fonksiyonel kelimesinin ilk kullanımı varyasyonlar hesabına kadar takip edilebilir. Ancak, genel anlamda kullanımı İtalyan matematikçi ve fizikçi Vito Volterra'ya atfedilmektedir. Yine de temeli büyük ölçüde Stefan Banach ve çevresindeki Polonyalı matematikçiler tarafından atılmış ve geliştirilmiştir. Çağdaş anlamda, fonksiyonel analiz bir topolojiye sahip vektör uzaylarının çalışılmasında, özellikle sonsuz boyutlu uzaylarda, gözükmektedir. Tanımdan yola çıkılarak fonksiyon analizinin sonlu boyutlu uzaylar kuramını da içerdiği düşünülebilir; ancak bu uzayları bir topolojisi olmadan inceleyen alan doğrusal cebirdir. Fonksiyonel analizin önemli bir işlevlerinden biri de ölçü, integral ve olasılık kuramı gibi genel kuramları sonsuz boyutlu uzaylara yaymaktır ki bu işlevin özelde adı sonsuz boyutlu analizdir.
Matematikte Hilbert uzayı, sonlu boyutlu Öklit uzayında uygulanabilen lineer cebir yöntemlerinin genelleştirilebildiği ve sonsuz boyutlu da olabilen bir vektör uzayıdır. Daha kesin olarak, bir Hilbert uzayı, uzayın tam metrik uzay olmasını sağlayan bir uzaklık fonksiyonu üreten bir iç çarpımla donatılmış bir vektör uzayıdır. Bir Hilbert uzayı, bir Banach uzayının özel bir durumudur. Matematik, fizik ve mühendislikte sıkça kullanılmaktadır. Kuantum mekaniğiyle uyumludur. Adını David Hilbert'ten almaktadır.
Matematikte, tensör, çok boyutlu verinin simgelenebildiği geometrik bir nesnedir. Skaler denilen yönsüz nicel büyüklükler, vektör denilen yönlü büyüklükler ve matris denilen iki boyutlu nesneler birer tensördür. Tensör, tüm bu nesnelerin genelleştirilmiş halidir ve çok boyutlu veri kümeleri için kullanılır. Nesnenin kaç boyutla ifade edildiğine de tensörün derecesi denilir. Bir skalerin derecesi sıfır, bir vektörün bir, bir matrisin ise ikidir. Tensörler üç ve üzeri dereceye sahip olabilir.
Matematikte doğrusal fonksiyon, her ne kadar bu terimle ile ifade edilse bile aslında şu iki farklı terimle ilgilidir:
- Kalkülüste ve ilgili dallarında doğrusal fonksiyon, derecesi sıfır veya bir olan polinom fonksiyon veya sıfır polinomdur.
- Doğrusal cebir ve fonksiyonel analizde doğrusal fonksiyon, bir doğrusal dönüşümdür.
Matematikte skaler çarpma, vektör uzayında tanımlanan temel işlemlerden biridir. Daha genel bir tanımla, soyut cebirdeki bir modüldür. Sezgisel geometrik bağlamda, bir reel vektörü pozitif reel sayı çarpanları ile skaler çarpma, vektörün yönünü değiştirmeksizin yalnızca büyüklüğünü değiştirir. Skaler terimi bu kullanımdan türetilmiştir: Bir skaler, vektörlerin ölçeklendirme işlemidir. Bir vektörün skaler ile çarpılması olan skaler çarpma ile, iki vektörün iç çarpımı birbirinden ayırt edilmelidir.
Vektör kalkülüsün'de, matematiğin bir dalıdır, üçlü çarpım genellikle öklit vektörü olarak adlandırılan üç boyutlu vektörlerin çarpımıdır. Üçlü çarpım tabiri iki farklı çarpım için kullanılır, bunlardan ilki skaler değerler için kullanılan skaler üçlü çarpımı, bir diğeri ise vektörel değerliler için kullanılan vektörel üçlü çarpımdır.
Fizikte -ayrıca yer çekimi için Gauss akı teoremi olarak bilinen- Gauss yer çekimi yasası, Newton'un evrensel çekim yasasına temelde eşdeğer olan fizik yasasıdır. Her ne kadar Yer çekimi için Gauss yasası Newton'un yasasına denk olsa da, pek çok durumda Gauss yer çekimi yasası hesaplama yapmak için Newton'un yasasından çok daha basit ve uygundur.
Vektör analizi ve modern haliyle diferansiyel geometride ''Stokes teoremi'' ya da güncel haliyle ''genelleştirilmiş Stokes teoremi'' veya ''Stokes-Cartan teoremi'' Vektör Analizi'nden çeşitli teoremleri hem basitleştiren hem de genelleştiren çokkatlılar üzerindeki diferansiyel formların integrasyonu ile ilgili önemli bir teoremdir. Klasik anlamı için Kelvin-Stokes teoremine bakılması gerekir. Modern anlamına 20. yüzyılın önemli matematikçilerinden Ellie Cartan ile kavuşmuştur. Yani teorem ismini İrlandalı matematikçi ve fizikçi George Gabriel Stokes ve modern haliyle Fransız matematikçi ve fizikçi Ellie Cartan'dan almaktadır. Modern anlamda Stokes teoremi bir diferansiyel form olan ω'nın bazı yönlendirilebilir Ω çokkatlısının sınırları üzerindeki integralinin Ω'nın tamamı üzerindeki dış türevi dω'nın integraline eşit olduğunu söyler. Yani;
Çok değişkenli kalkülüs veya Çok değişkenli hesaplama, matematik biliminin bir alt alanıdır. Bir değişkenli hesapların, birden fazla değişkenli fonksiyonlarla hesaplara yayılması ve tek değişken yerine çoklu değişken içeren fonksiyonların entegrasyonu olarak görülür. Matris, tensör, kısmi türev, çokkatlı integral, çizgi integrali, yüzey integrali, hacim integrali, Jacobi, Hesse, Gradyan gibi inceleme alanları vardır.
Bu sayfa teoremlerin bir listesidir. Ayrıca bakınız:
- Sonlu basit grupların sınıflandırılması
- Temel teoremlerin listesi
- Yardımcı teoremler listesi
- Varsayımların listesi
- Eşitsizliklerin listesi
- Matematiksel kanıtların listesi
- Yanlış adlandırılmış teoremlerin listesi
Vektör değerli fonksiyon ya da vektör fonksiyonu, bir ya da daha fazla değişkeni sonlu ya da sonsuz boyutlu vektör olan fonksiyondur. Bir vektör fonksiyonunun girdisi skaler ya da vektör olabilir. Fonksiyonun tanım kümesi ve değer kümesi farklı cinste olabilir.
Matematikte, n boyutlu karmaşık koordinat uzayı, kompleks uzay ya da karmaşık uzay, sıralı tane karmaşık sayıdan oluşan uzaya verilen addır. Bu uzayın elemanlarına karmaşık (kompleks) vektör adı verilir.