İçeriğe atla

Varyans analizi

Varyans Analizi (veya ANOVA, İngilizce ANalysis Of VAriance sözcüklerinin kısaltması) istatistik bilim dalında, grup ortalamaları ve (gruplar içi ve gruplar arası varyasyon gibi) bunlara bağlı olan işlemleri analiz etmek için kullanılan bir istatistiksel modeller koleksiyonudur. Varyans Analizi kullanılmaktayken belirlenmiş bir değişkenin gözlemlenen varyansı farklı değişim kaynaklarına dayandırılabilen varyans bileşenine ayrılır. En basit şekliyle varyans analizi birkaç grubun ortalamalarının birbirine eşit mi eşit değil mi olduğunu sınamak için bir çıkarımsal istatistik sınaması olur ve bu sınama iki-grup için yapılan t-test sınamasını çoklu-gruplar için genelleştirir. Eğer, çoklu değişkenli analiz için birbiri arkasından çoklu iki-örneklemli-t-sınaması yapmak istenirse bunun I. tip hata yapma olasılığını artırma sonucu doğurduğu aşikardır. Bu nedenle, üç veya daha fazla sayıda (gruplar için veya değişkenler için) ortalamaların ististiksel anlamlığının sınama ile karşılaştırılması için Varyans Analizleri daha faydalı olacağı gerçeği ortaya çıkmaktadır.

Kısacası, ANOVA bir parametrik çıkarımsal metodu olup anakütle ortalamaları arasında farkın olup olmadığını sınamak için kullanılır. Örneğin, 'Opel ile Toyota marka araçların benzin tüketim ortalamaları aynıdır' H0 hipotezinin sınaması yapılır. Sonuç, "ortalamalar aynıdır" veya "ortalamalar aynı değildir" şeklinde çıkartılır. Bu analizdeki iki değişken arasında lineer bağlantı için (regresyon analizinde yapıldığı gibi) herhangi bir eğim katsayısı bulunmadığı kabul edilir. ANOVA analizi yapılabilmesi için en temel şart, ortalamaları incelenecek olan anakütlelerin varyanslarının aynı olmasıdır.

Bu yöntem ilk defa İngiliz istatistikçi ve genetikçi Ronald Fisher tarafından 1920'lı ve 1930'lu yıllarda geliştirilmiştir. Genel olarak istatistiksel anlamlılık sınamaları içinde F-dağılımı'nı kullanmaları ile karakterize edildikleri için bazen bu analize Fisher'in Varyans Analizi adı da verilmektedir.

Arka plan ve terminoloji

Varyans analizi deneysel verilerin analiz edilmesi için özellikle pratikte çok defa kullanılan özel bir istatistikel hipotez sınaması şeklidir. İstatistiksel hipotez sınaması bir veriler kullanarak karar vermek yöntemidir. Bir örneklem ve sıfır hipotezden hesaplanmış sınama sonucunun istatistiksel anlamsal olduğunu bildirmek bu sonucun (sıfır hipotezin doğru olduğu kabul edilirse) şans eseri olarak ortaya çıkmasının pek olası olmadığını bildirmek ve kabul etmektir. (Eğer bir olasılık p-değeri bir anlamlılık seviyesi eşik değerinden daha düşük ise) bir istatistiksel anlamlı sonuç sıfır hipotezi'nin reddedilmesini haklı çıkartır.

Varyans analizinin uygulandığı tipik bir problemde sıfır hipotez basitçe tüm grupların aynı anakütleden ayrı ayrı basit olasılık örneklemleri ile elde edildiğidir. Bu ise bütün sağaltım işlemlerinin aynı etki (hatta hiçbir etki) vermediğine işaret etmektedir. Böylece sıfır hipotezin reddedilmesi değişik sağaltım işlemlerinin değişme yaratan etkileri olduğunu kabul etmeyi ima etmektedir.

Fena olmayan bir uyma
Hiç uyma olmaması
Çok güzel uyma olması

Çıkarımsal istatistik ana kurulma kurallarına göre hipotez sınaması I. Tip Hata yapma haddini (yani hatalı bilimsel iddialara yol açan hatalı pozitifleri) bir anlamlılık seviyesi ile sınırlamaktadır. Deneyciler aynı zamanda II. Tip hataları (yani bilimsel bulguları çıkartma fırsatının kaçırılmasına neden olan hatalı negatifleri) sınırlamak istemektedirler. II. Tip Hata haddi çeşitleri nedenlerin fonksiyonudur ve bunlar arasında şunlar bulunur: (a) Örneklem büyüklüğü (deneylem maliyetleri ile pozitif korelasyonlu olarak birlikte değişir). (b) Anlamlılık seviyesi (ispat için gereken standartlar çok sıkı ise bir yapılabilecek bir bulgu gözden kaçırma olasılıkları da yüksek olmaktadır). (c) Etki büyüklüğü (etkiler herhangi bir alelade gözlemciye çok aşikar görünmekteyse II. Tip Hata yapma olasılığı düşüktür.)

Varyans analizi için kullanılan terminoloji istatistiksel çoğunlukla deneysel tasarım için kullanılan terimlerle aynıdır. Deney yapan, bir "etki"yi tespit etmek girişimi ile "faktörler"'i ayarlar ve "yanıtlar"ı ölçer. Sonuçların geçerliliğini sağlamak için "faktörler"i deneyleme birimlerine "rassallaştırma" ve "bloklama" karışımı ile ulaştırır. Deneysel "körleştirme" ağırlıkların tarafsız olmasını sağlar. "Yanıt"lar, kısmen etki sonucu olarak kısmen de rassal hata dolayısıyla, bir değişebilirlik gösterir.

Varyans analizi çeşitli düşünce tarzlarının bir sentezidir ve çok değişik maksatlarla kullanılmaktadır. Bu nedenle bu analizi çok özlu veya kesinlikle tanımlamak gayet zordur.

Dengeli veriler için klasik varyans analizi üç değişik şeyi aynı anda yapmaktadır:

  1. Veri açıklama analizi: Varyans analizi toplamalı verilerin ayrışımın organize edilmesidir. Bunun karesel toplamı ayrışımın her bileşenin varyansını (yahut eşit anlamalı olarak bir lineer modelin terimlerini) göstermektedir.
  2. Ortalama karelerin karşılastırılması: F-sınamaları ile... modellerin iç-içine geçmiş ardışıklı olarak sınanmasını sağlama.
  3. Varyans analizi ile çok yakın ilişkili olarak bir lineer modelin katsayı kestirimleri ve standart hataları ile verilere uygulanması.[1]

Kısaca ifade ile varyans analizi çözümlenen veriler için bir açıklama geliştirme ve doğrulaması için birkaç çeşit analiz yolu olarak kullanılan istatistiksel alettir.

Buna ek olarak

  1. Analiz için hesaplamaların "zarif" olduğu ve sonuçlarının varsayımlarının ihlalleri hallerine karşı nispeten güçlü olduğu bilinmektedir.
  2. Varyans analizi (çoklu örneklem karşılaştırmaları ile) sanayi için uygun güçlü analiz sağlamaktadır.
  3. Çok çeşitli deneylem tasarımının analizi için hemen adapte edilebilmektedir.

Bu nedenle

  • Varyans analizi "psikoloji bilimi araştırmalarında en çok kullanılan (bazılarına göre en kötüye kullanılan) istatistik tekniği olma statüsünde pek uzun zamandır kalmıştır.".[2]
  • Varyans analizi "mutlaka çıkarımsal istatistik alanında en çok kullanışlı teknik olduğu " iddia edilebilir."[3]

Varyans analizinin özellikle karmaşık deneysel tasarılar için öğretilmesi ve öğrenilmesi gayet zordur ve bu arada "sınırlandırılmış rassallaştırma" konusu gayet kötü şöhret yapmıştır.[4] Bazı hallerde yöntemin tam uygunlukla kullanılabilmesi için, önce görüntülü tanıma yöntemi ile belirlenmesi gerekmekte ve sonra da en iyi yetkili klasik testi uygulayarak bir "konsaltasyon" rejimi kullanmak gerekmektedir.[5]

Deneysel tasarım terimleri

Dengeli tasarım
Her bir hücresinde (yani her ikili sağlatım bileşkenleri için) aynı sayıda gözlem bulunan deneysel tasarım.
Bloklama


Model sınıfları

Varyans Analizi'nde üç değişik sınıf model kullanılmaktadır. Bunlar şöyle özetlenebilir:

Sabit etki modelleri

Verinin normal dağılım gösteren bir anakütleden geldiğini ve ancak farklı ortalamalar dolayısıyla ayrım yapılabileceğini varsaymaktadırlar.

Rastgele etki modelleri

Verinin bir farklar hiyerarşisi ile sınırlanmış olan değişik hiyerarşi içeren anakütlelerden geldiğini varsayar.

Karışık etki modelleri

Içinde hem sabit etkiler hem de rastgele etkiler kapsayan durumları inceler.

Pratik problemlerde varyans analizi deneylemler için kullanılır ve deneylem elemanlarına uygulanan sağlatımların sayısına ve nasıl uygulandıklarına göre birkaç değişik tipe sınıflandırılmaktadırlar:

Tek-yönlü varyans analizi

Bu tür analiz iki veya daha çok sayıda bağımsız grup arasındaki farklılıkların sınanmak istenildiği hallerde uygulanır. F-dağılımına dayanır. Tipik olarak tek yönlü varyans analizi en aşağı üç değişik grup olduğu zaman uygulanmaktadır.[6] İki-grup halinde daha kolay olarak t-testi aynı sonuçları vermektedir; çünkü bu halde t-testi ve F-testi birbirine çok yakından ilişkilidir. Bu yakın ilişki şöyle ifade edilir:

.

Tekrarlanan ölçülerle tek-yönlü varyans analizi

Bu tür varyans analizinde aynı elamanlara her değişik sağlatım uygulanır, yani elamanlar tekrarlanan ölçülere tabi tutulurlar. Bu yöntem kullanılırken elemanlar kalıntı etkilerine maruz kalabilirler.

Faktōryel varyans analizi

Bu tür varyans analizi eğer deneyci iki veya daha çok sayıda sağlanım (bağımsız) değişkenin etkilerini incelemek isterse kullanılır. En çok kullanılan faktōryel varyans analizi iki bağımsız değişken ve her değişken için iki değişik değer veya seviye olduğu 2x2 (ikiye iki) tasarımdır. Faktōryel varyans analizi çoklu seviyeli, 3x3 (üçe üç) veya daha yüksek sıralı 2x2x2 (ikiye ikiye iki) vb. deneylem tasarımlarında da kullanılabilirler. Ancak bu daha yüksek sayıda faktörler için analizler çok nadir olarak yapılmaktadır. Buna neden hesapların çok karmaşık ve uzun olması ve ortaya çıkartılan sonuçların açıklanmalarının çok zor olduğudur.

Karışık tasarım varyans analizi

Eğer iki veya daha çok sayıda bağımsız gruplar elemanlarına tekrar edilen ölçüler uygulayıp sınanmak istenirse, bir faktöryel karışık tasarım varyans analizi gerçekleştirilebilinir. Bunda bir faktör bağımsız olur ve diğer faktör tekrar edilebilir ölçülere bağlıdır. Bu, karışık etkiler modeline bir örnektir.

Çok değişkenli varyans analizi

Birden çok bağımlı değişken bulunduğu zaman bu tür varyans analizi kullanılır.

Modeller

Sabit etkiler modelleri

Varyans analizi içinde sabit etkiler modeli, bir deneylem içinde deneycinin deney örneklem elemanlarına yanıt değişkeni değerlerinin birkaç değişik sağlanım uyguladığı zaman değişip değişmediğini incelemek istediği hallere tatbik edilir. Bu modeller deneyciye sağlanımın tüm anakütle içinde ortaya çıkarabileceği yanıt değişken değerlerinin açıklığını kestirim yapma imkâni sağlar.

Rastgele etkiler modelleri

Rastgele etkiler modelleri, sağlanımlar sabit olmadıkları hallerde kullanılırlar. Bu (faktör seviyeleri adı ile de bilinen) değişik sağlanımlar daha büyük bir anakütleden örneklem ile bulunmaları halidir. Sağlanımları kendileri rassal değişken olmaları nedeniyle, sabit etkiler modelinden daha değişik bazı varsayımların ve sağlanımların karşılaştırılmaları gerekmektedir.

Rastgele etkiler modelerinin veya karışık etki modellerinin çoğunda iyi belirenmiş örneklemi alınmış faktörleri ilgilendiren çıkarımsal istatistik analizlerle ilgili değildir. Bunu bir orneğinle açıklamak şöyle yapilabilir: Aynı mali üretmek için çok değişik makinaların kullanıldığı bir sanayi birimi ele alınsın. Bu işletmeyi inceleyen istatisikçi üç değişik makinenin birbirleri ile karşılaştırılması ile ilgilenmesi uygulanabilen pratik bir problem degildir. Buna karşılık tüm makinalar hakkında, tüm ortalama üretkenlik ve değişik makinelerde üretkenliğin yayılımı hakkında çıkarımsal istatistik analizi sınamalar arastirmaciyi ilgilendiren bir sorun olabilir.

Varsayımlar

  • İstatistiksel bağımsızlık: Bu varsayım deneylem tasarımı için gerekmekte ve sağlatım uygulanan elamanların bağımsız oldukları varsayılmaktadır.
  • Normallik: Her bir grup içindeki elamanların normal dağılım gösteren anakütlelerden geldikleri varsayılır. Verilerinin normallik özelliği olup olmadığı ya normallik sınamaları olan Kolmogorov-Şmirnov sınaması veya Shapiro-Wilk sınaması kullanılarak incelenebilir. Normallik varsayımını incelemek için parametrik olmayan istatistik sınaması olan Kruskal-Wallis sınaması da kullanılabilir.
  • Eşit varyanslar veya heteroskedastiklik: Homoskadastiklik halinde her bir grup elemanlarının geldikleri anakütlelerde varyansların aynı olduğu varsayılır. Verilerin eşit varyanslar varsayımına uyup uymadıklarını sınamak için tipik olarak Levene'in sınaması kullanılır. Ama "Levene'in sınaması" için grup gözlem sayılarının eşit olması gerekir. Daha değişik hallerde eğer gruplarda sapan değer yoksa "Bartlet Sınaması" veya gruplarda gözlem sayıları eşitse "Cochran Varyans Eşitliği Sınaması" kullanılır.

Bazı istatistikçiler verilerin normallikten ayrılması halinde varyans analizinin esası olan F-sınaması'nın güvenilmez olacağını bildirmektedir.[7] Diğer istatistikçiler ise F-sınamasının "güçlü olduğunu", yani normal olmamakdan fazla etkilenmediğini savunmaktadırlar.[8]

Bu ortak varsayımlar yanında sabit etki modelleri için hataların bağımsız ve aynı şekilde normal dağılım gösterdikleri de, yani

olduğu varsayılmaktadır. Varyans analizi için kullanılan rastgele etki modelleri ve karışık etki modelleri için hataların ortalama ve varyansi için daha karmaşık varsayımlar gerekmektedir çünkü faktörler kendilerine özel dağılımlardan ortaya çıkartılabilirler.

Varyans analizinin inceleme yaklaşımı

Varyans analizinde temel yöntem, toplam kareler toplamını modelde kullanılan etkilere uygun olan parçalara bölmektir. Bu yönteme aşağıda verilen örnek tek bir sağlatımın değişik seviyelere uygulanması halidir.

Kareler toplamının parçalara bölünmesi

Örnek olarak tek bir sağlatımın değişik seviyeler uygulanması sonucu ortaya çıkan toplam kareler toplamı şu parçalara bölünür:

Serbestlik dereceleri de aynı şekilde parçalara bölünmektedir ve her ilgili parçanın bir ki-kare dağılımı gösterdiği belirlenmektedir.

F-sınaması

Toplam sapmanın parçalarının karşılaştırılması için F-sınaması uygulanır. Tek yönlü veya tek faktörlü varyans analizi için istatistik anlamlılığın sınanması, F-sınama istatistiği olan şu

burada:
, İ = sağlatımlar sayısı
ve
, nT = toplam gözlem eleman sayısı

ifade ile I-1 ve nT serbestlik derecelerinde F-dağılımı ifadesini karşılaştırmak suretiyle gerçekleştirilir.

F-dağılımı kullanmak doğal bir uygulamadır, çünkü sınama istatistiği her biri ki-kare dağılımı gösteren iki kareler toplamları ortalamasının bir diğerine bölümüne eşittir.

Ayrıca bakınız

Kaynakça

  1. ^ Gelman (2005, s 2)
  2. ^ Howell (2002, s.320)
  3. ^ Montgomery (2001, s.63)
  4. ^ Gelman (2005, s.1)
  5. ^ Gelman (2005, s.5)
  6. ^ Akyıldız, Murat (12 Nisan 2009). "Tek Faktörlü Varyans Analizi (One-Way Anova) ve bir spss örneği". www.istatistik.gen.tr. 23 Eylül 2014 tarihinde kaynağından arşivlendi. Erişim tarihi: 19 Haziran 2020. 
  7. ^ Lindman,H.R. (1974), Analysis of variance ın complex experimental designs. San Francisco: W. H. Freeman & Co.
  8. ^ Ferguson,G.A. ve Takane,Y. (2005), Statistical Analysis in Psychology and Education 6.Ed.. Montréal, Quebec: McGraw-Hill Ryerson Ltd.

Dış bağlantılar

İlgili Araştırma Makaleleri

Regresyon analizi, iki ya da daha çok nicel değişken arasındaki ilişkiyi ölçmek için kullanılan analiz metodudur. Eğer tek bir değişken kullanılarak analiz yapılıyorsa buna tek değişkenli regresyon, birden çok değişken kullanılıyorsa çok değişkenli regresyon analizi olarak isimlendirilir. Regresyon analizi ile değişkenler arasındaki ilişkinin varlığı, eğer ilişki var ise bunun gücü hakkında bilgi edinilebilir. Regresyon terimi için öz Türkçe olarak bağlanım sözcüğü kullanılması teklif edilmiş ise de Türk ekonometriciler arasında bu kullanım yaygın değildir.

Hipotez testi, bir hipotezin doğruluğunun istatistiksel bir güvenilirlik aralığında saptanması için kullanılan yöntem.

<span class="mw-page-title-main">Betimsel istatistik</span>

Betimsel istatistik veya betimsel sayımlama istatistik bilim alanında üç temel kısmından biridir. Sayısal verilerinin derlenmesi, toplanması, özetlenmesi ve analiz edinilmesi ile ilgili istatistiktir.

İstatistiksel terimler, kavramlar ve konular listesi matematik biliminin çok önemli bir alt-bölümü olan istatistik biliminde içeriğinde bulunan konuların çok ayrıntılı olarak sınıflandırılması ile ortaya çıkarılmıştır. Milletlerarası İstatistik Enstitüsü bir enternasyonal bilim kurumu olarak istatistik bilimi konu ve terimlerini bir araya toplayıp 28 bilim dilinde karşılıklı olarak yayınlamıştır. Bu uğraşın sonucunun milletlerarası bilim camiasının büyük başarılarından biri olduğu kabul edilmektedir. Ortaya çıkartılan, istatistik bilimi içinde kullanılan ve bu bilime ait özel kavramların ve terimlerin listesi, tam kapsamlı olma hedeflidir ve böylelikle istatistik bilimi için bir Türkçe yol haritası yapılmış olmaktadır.

İstatistik biliminde normallik sınamaları bir seri parametrik olmayan istatistik sınamalar çeşididir. Normallik sınamalarının amacı verilmiş bir veri dizisinin normal dağılıma uygunluk iyiliğinin incelenmesidir. Bir sıra parametrik olmayan sınama geliştirilmiş bulunmasına rağmen birçok istatistikçi pratikte daha az kesin ve daha çok subjektif sağduyu ve ekpertiz gerektiren gösterim karşılaştırmalarını kullanmaktadır. Normallik sınamaları yalnız örneklem verilerinin doğrudan doğruya incelenmesinde kullanılmamakta, fakat özellikle ekonometrik analizlerde tek regresyon denklemi tahmininden sonra çıkan hataların normal olup olmadıklarının araştırılması için de çok kullanılmaktadırlar.

İstatistik biliminde önemli bir yeri olan parametrik olmayan istatistik parametrik olmayan istatistiksel modeller ve parametrik olmayan çıkarımsal istatistik, özellikle parametrik olmayan istatistiksel hipotez sınamalar ile ilgilenir. Parametrik olmayan yöntemler çok defa dağılımlardan serbest yöntemler olarak da anılmaktadır, çünkü verilerin bilinen belirli olasılık dağılımı gösteren kaynaklardan geldiği varsayımına dayanmamaktadır.

İstatistik bilim dalında Kruskal-Wallis sıralamalı tek yönlü varyans analizi, bağımsız gruplar arası anakütle medyanlarının eşitliğini sınamak amacı ile kullanılan bir parametrik olmayan istatistik sınamasıdır. Adı bu yöntemi ilk defa ortaya koyan William Kruskal ve W. Allen Wallis atıfla konmuştur. Matematiksel olarak ayrı olmakla beraber, tek yönlü varyans analizinin bir değişik şekli olarak görülebilir. Diğer bir görüşe göre Mann-Whitney U sınamasının 3 veya daha çoklu gruplara genişletilmesidir.

İstatistik bilim dalı içinde Friedman sıralamalı iki yönlü varyans analizi sonradan çok tanınmış bir iktisatçı olan Amerikan Milton Friedman tarafından ortaya atılan bir parametrik olmayan istatistik sınamasıdır.

Mann-Whitney U testi niceliksel ölçekli gözlemleri verilen iki örneklemin aynı dağılımdan gelip gelmediğini incelemek kullanılan bir parametrik olmayan istatistik testdir. Aynı zamanda Wilcoxon sıralama toplamı testi veya Wilcoxon-Mann-Whitney testi) olarak da bilinmektedir. Bu testi ilk defa eşit hacimli iki örneklem verileri için Wilcoxon (1945) ortaya atmıştır. Sonradan, Mann and Whitney (1947) tarafından değişik büyüklükte iki örneklem problemleri analizleri için uygulanıp geliştirilmiştir.

İstatistik bilim dalı içinde tekrarlama sınaması iki değer (0-1) alan veya iki değer alma şekline dönüştürülmüş bir kategorik değişken için örneklem veri serisinin ardı ardına bir rastgele sıralama ile gelip gelmediğini sınamak için kullanılan bir parametrik olmayan istatistik yöntemidir.

Shapiro-Wilk Testi, örneklemelerde temel alınan istatistiksel yığının normal dağıldığı bir hipotezin sağlamasını yapan istatistiksel bir hipotez testidir. Parametrik olmayan istatistikte normallik testleri arasında yer almaktadır. Shapiro-Wilk Testi, Amerikalı istatistikçi Samuel Shapiro ile Kanadalı istatistikçi Martin Wilk tarafından 1965 yılında ortaya konuldu. Normal dağılım için analizin grafiksel bilgisini bir anahtar şeklinde normal olasılık grafiği kullanarak özetlemeye yönelik tezlerinin sonucudur.

Anderson-Darling sınaması, istatistik bilim dalında, bir parametrik olmayan istatistik sınaması olup örneklem verilerinin belirli bir olasılık dağılımı gösterip göstermediğini sınamak için, yani uygunluk iyiliği sınaması için, kullanılmaktadır. Bu sınama ilk defa 1952'de Amerikan istatistikçileri T.W.Anderson Jr. ile D.A.Darling tarafından yayınlanmıştır. Bu sınama Kolmogorov-Smirnov sınamasının değiştirilmesi ve olasılık dağılımının kuyruklarına daha çok ağırlık verilmesi ile ortaya çıkartılmıştır.

İstatistik bilim dalında, Kolmogorov-Smirnov (K-S) sınaması parametrik olmayan istatistik olup Andrey Kolmogorov ve Nikolai Smirnov adlarındaki iki Sovyet bilim insanı tarafından oluşturulmuştur.

F-testi istatistik bilimi içinde bir sıra değişik problemlerde kullanılan parameterik çıkarımsal sınama yöntemidir. F-testi sıfır hipotezine göre gerçekte bir F-dağılımı gösteren sınama istatistiği bulunduğu kabul edilen hallerde, herhangi bir istatistiksel sınama yapma şeklidir. Bu çeşit bir istatistiksel sınama önce Ronald Fisher tarafından 1920'li yıllarda tek yönlü varyans analizi için ortaya atılıp kullanılmış ve sonradan diğer şekillerde F-dağılım kullanan sınamalar da ortaya atılınca, bu çeşit sınamalara genel isim olarak F-testi adı verilmesi Ronald Fisher anısına George W. Snecedor tarafından teklif edilip, istatistikçiler tarafından F-testi bir genel isim olarak kabul edilmiştir.

Güven aralığı, istatistik biliminde bir anakütle parametresi için bir çeşit aralık kestirimi olup bir çıkarımsal istatistik çözüm aracıdır. Bir anakütle parametre değerinin tek bir sayı ile kestirimi yapılacağına, bu parametre değerini kapsayabilecek iki sayıdan oluşan bir aralık bulunur. Böylece güven aralıkları bir kestirimin ne kadar güvenilir olduğunu gösterir.

<span class="mw-page-title-main">Anlamlılık seviyesi</span>

Anlamlılık seviyesi, istatistik biliminde, İngiliz istatistikçi Ronald Fisher tarafından çıkartımsal hipotez sınama yönteminin kurulması sırasında kavramlaştırılmış özel bir manası olan bir bilimsel ve istatistiksel terimdir. İstatistiksel anlamlılık eğer bir sonucun gerçekleşme olasılık değerlendirilmesine göre olabilirliği düşük değil ise ortaya çıkar.

Tek anakütle ortalaması için parametrik hipotez sınaması veya tek-örneklem için sınama veya μ için sınama, bir rastgele örneklem ortalaması ile bu örneklemin çekilmiş olduğunu düşündüğümüz anakütlenin μ ile belirtilen "anakütle ortalaması" hakkında bir hipotez değeri belirtilmesinin anlamlı olup olmadığını araştırmamızı sağlayan parametrik hipotez sınamasıdır.

Çıkarımsal istatistikte, boş hipotez, sıfır hipotez ya da sıfır hipotezi, beklenenin dışında bir durumun olmadığını, mesela gruplar ya da değişkenler arasında bir ilişki bulunmadığını veya ölçülen iki olgunun arasında bir fark olmadığını kabul eden genel bir önermedir. Örneğin tıpta, denenen bir tedavinin etkisiz olması; hukukta, sanığın suçsuz olması birer boş hipotezdir. Modern bilim hipotezler üretip bunları test ederek ilerler; bir boş hipotezinin belirli bir güvenilirlik aralığında istatistiksel olarak kabul ya da reddedilmesi hipotez testleriyle yapılmaktadır.

Ki-kare testi veya χ² testi istatistik bilimi içinde bir sıra değişik problemlerde kullanılan bazıları parametrik olmayan sınama ve diğerleri parametrik sınama yöntemidir. Bu çeşit istatistiksel sınamalarda test istatistiği için "örnekleme dağılımı", sıfır hipotez gerçek olursa ki-kare dağılımı gösterir veya sıfır hipotez "asimptotik olarak gerçek" olursa, eğer sıfır hipotez gerçekse ve eğer örnekleme hacmi istenilen kadar yeterli olarak büyük ise bir ki-kare dağılımına çok yakın olarak yaklaşım gösterir.

Student'ın t-testi istatistik bilimi içinde incelenen, eğer sıfır hipotez desteklenmekte ise test istatistiğinin bir Student's t-dağılımı gösterdiği hallerde uygulanan çıkartımsal istatistiksel hipotez sınamasıdır. Verilen iki değişik grup sayısal verinin birbirinden anlamlı olarak farklılık gösterip göstermemesini sınamak için kullanılabilir. En sıkça uygulanma örnekleri eğer test istatistiği içinde bulunan ölçek parametre faktörünün değerinin bir normal dağılım gösterdiği bilinmekte olduğu hallerde tatbik edilmektedir. Eğer test istatistiği içinde bulunan ölçek parametresi faktörünün değeri bilinmiyorsa ve bu faktör veriye dayayan bir kestirim ile ifade edilmekte ise test istatistiği bir Student'ın t-dağılımı gösterebilir.