İçeriğe atla

Van Stockum tozu

Genel görelilik
İlgili başlıklar
düzenle 

Genel görelilikte, Van Stockum tozu Einstein alan denklemlerinin silindirik simetri ekseni etrafında dönen tozun oluşturduğu yer çekimi alanı için kesin sonucudur. Tozun yoğunluğu eksenin uzaklığıyla beraber arttığı için çözüm oldukça yapay olmakla kalmaz, aynı zamanda genel görelilikteki bilinen en basit çözümlerden olmakla beraber aynı zamanda Pedagojik olarak önemli örneklerden biri olarak gösterilir.

Bu çözüm ismini Willem Jacob Van Stockum'dan almıştır, kendisi 1937 yılında, Cornelius Lanczos'un 1924 yılında keşfettiği olayın bağımsızlığını yeniden keşfetti.

Türetme

Bu çözümü elde etme yollarından biri de katı rotasyon içindeki silindirik olarak harika simetriye bakmaktır (akışkan çözümleri). Dünya hatları ile zamansal uyumlu sıvı parçacıkların sıfırdan farklı girdap olan ancak genişleme ve kesme kaybolan formunda olduğunu kabul ediyoruz. (İşin aslı toz parçacıkları kuvvet hissetmedikleri için, bunun bir zamansal jeodezik uyum olduğu ortaya çıkacak ama bunu ileri işlemlerde böyle kabul etmemize gerek yoktur).

Tahmin yürüterek yaptığımız basit hesaplamalar aşağıdaki sisteme ihtiyaç duyar, bu da iki tane belirlenmemiş ye bağlı fonksiyonu içerir:

Yanlış anlaşılmalardan kaçınmak için, aşağıdaki işlemi uygulamalıyız:

Böylece metrik tensörü iki tanımlanmayan faktör cinsinden verir:

Verilerimizi çarparsak

Bu sisteme göre iki tanımlanmayan fonksiyon cinsinden Einstein tensörünü bulmuş oluruz ve akışkan çözümlerinin sonucundan zaman benzeri birim vektör oluştururuz sıvı parçacığına tanjant çizgisi olan her yer için. Böylece şu sonuca ulaşırız:

Bu aşağıdaki koşulları vermektedir:

yi çözüp değeri için uygun sistemler Van Stockum çözümünü tanımlamaktadır:

Bu sistemin sadece da tanımlı olduğu unutulmamalıdır.

Özellik

Bizim çerçeveye göre Einstein tensör Computing aslında basınç kaybolur gösterir, bu yüzden bir toz çözümümüz var. Toz kütle yoğunluğu bek çıkıyor

simetri ekseninde bu sonludur, ama yoğunluk yarıçap ile beraber artar ama maalesef bu astrofiziğin sınırladığı özelliklerden biridir.

Gösterilen Killing denklemlerini çözersek aşağıdakiler tarafından oluşturulan

Burada, sıfırdan farklı girdap vardır, bu yüzden, hem de bu eksen etrafında silindirik simetri ve dönme ekseni boyunca çeviri altında toz partiküllerinin dünya çizgisinde çeviri altında sabit bir uzay-değişmeyen var.

Gödel toz çözeltisi aksine, van Stockum toz parçacıkları geometrik seçkin eksen etrafında dönen vardır toz unutmayın.

Denildiği gibi bileşeni kaybolur ama vorticity vektörü şu şekildedir.

Bu hatta Comoving grafikte da toz partiküllerinin dünya hatları aslında parçacıklar simetri ekseni etrafında döndürülür toz olarak birbirinden yaklaşık büküm vardır, dikey çizgiler olarak görünür olduğu anlamına gelir. Toza bir küçük top yap evrimi takip. Başka bir deyişle, bunun kendi ekseni çevresinde döner ( a parallel) ancak diğer kesme veya genişletmek değildir. İkincisi özellikle biz sert dönme ile ne demek tanımlar. Çevri vektörünün büyüklüğü sadece bir olur eksen kendisini dikkat edin .

Tidal tensörü;

bu toz parçacıkları üzerinde sürme gözlemci dönme düzlemi içinde izotropik gelgit gerilme geçirmektedir göstermektedir. Magnetogravitic tensör olduğunu

Aşikar paradox

Gerçek Paradoks

Dışa doğru gittiğimizde, görüyoruz ki daha büyük radii'li horizontal yuvarlaklar kapalı zamanımsı (zaman benzeri) eğridirler (curve) (yani büyük radiili horizanlar yuvarlaklar – kapalı zamanımsı eğri). Bu CTC lerin paradoksal yapısına ilk olarak van Stockum dikkat çekmişti: World lineları kapalı zamanımsı eğri oluşturan gözlemciler rahatça kendi geçmişlerini ziyaret edebilirler veya etkileyebilirler. Daha da kötüsü, böyle bir gözlemciyi, üçüncü hayatında (lifetime) örneğin hızlanmayı durdurmaya karar vermesini engelleyebilecek hiçbir şey yoktur ve bu durum ona bir den fazla biyografi verir

Kapalı zamansı (timelike) kıvrımlar genel göreliliğin birçok çözümünde ortaya çıkabilirler ve ortak ortaya çıkışları/görünüşleri bu teoriye en sorunsal teorik itirazlardan biridir. Ancak çok az fizikçi böyle itirazların temelinde tamamen genel göreliliği kullanmayı reddederler. Tercihen çoğu pragmatik tutum alarak her ne zaman onunla (genel görelilik) kurtulmak isterse teorinin birçok astrofiziksel durumda göreceli basitliği ve iyi kurulmuş güvenilirliği sayesinde göreceli olarak mantıklı gelir. Bu birçok fizikçinin her gün Newton Fiziği'ni kullanmasına benzer değildir, öyle olsa bile onlar bunun Galilei kinematiklerinin görelilik kinematikleri tarafından "yıkıldığının" çok iyi farkındalar

Ayrıca bakınız

Kaynakça

  1. Lanczos, Cornelius (1924). "Über eine stationäre Kosmologie im Sinne der Einsteinschen Gravitationstheorie". Zeitschrift für Physik. Cilt 21. s. 73. Bibcode:1924ZPhy...21...73L. doi:10.1007/BF01328251.  Lanczos's paper announcing the first discovery of this solution.
  2. van Stockum, Willem Jacob (1937). "The gravitational field of a distribution of particles rotating around an axis of symmetry". Proc. Roy. Soc. Edinburgh A. Cilt 57. s. 135.  Van Stockum's paper announcing his rediscovery of this solution.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Del işlemcisi</span>

Yöney analizinde del işlemcisi, 3 boyutlu Kartezyen koordinatlarda nabla işlemcisine denk gelir ve simgesiyle gösterilir.

Vektör hesaplamada, divergence bir vektör alanının kaynak ya da batma noktasından uzaktaki bir noktada genliğini ölçen işleçtir; yani bir vektör alanının uzaksaması işaretli bir sayıdır. Örneğin ısındıkça genişleyen havanın hızını gösteren bir vektör alanının uzaksaması pozitif olacaktır, çünkü hava genişlemektedir. Eğer hava soğuyup daralıyorsa uzaksama negatif olacaktır. Bu özel örnekte uzaksama yoğunluğun değişiminin ölçüsü olarak düşünülebilir.

ile gösterilen bir vektör alanının rotasyoneli, nabla operatörü ile 'nin vektörel çarpımına eşittir.

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

<span class="mw-page-title-main">Küresel koordinat sistemi</span>

Küresel koordinat sistemi, üç boyutlu uzayda nokta belirtmenin bir yoludur.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

Lorentz kuvveti, fizikte, özellikle elektromanyetizmada, elektromanyetik alanların noktasal yük üzerinde oluşturduğu elektrik ve manyetik kuvvetlerin bileşkesidir. Eğer q yük içeren bir parçacık bir elektriksel E ve B manyetik alanın var olduğu bir ortamda v hızında ilerliyor ise bir kuvvet hissedecektir. Oluşturulan herhangi bir kuvvet için, bir de reaktif kuvvet vardır. Manyetik alan için reaktif kuvvet anlamlı olmayabilir, fakat her durumda dikkate alınmalıdır.

Klein-Gordon Denklemi, Schrödinger denkleminin bağıl/göreli (relativistik) olan versiyonudur ve atomaltı fizikte kendi ekseni etrafında dönmeyen parçacıkları tanımlamada kullanılır. Oskar Klein ve Walter Gordon tarafından bulunmuştur.

Olasılık kuramı ve istatistik bilim dalları içinde matris normal dağılımı tek değişebilirli normal dağılımının çok değişkenli olarak genelleştirilmesidir.

Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın çoklu değişirli hallere genelleştirilmesidir.

Matematikte, Poisson denklemi elektrostatik, makine mühendisliği ve teorik fizik'de geniş kullanım alanına sahip eliptik türdeki Kısmi diferansiyel denklemlerdir. Fransız matematikçi, geometrici ve fizikçi olan Siméon Denis Poisson'dan sonra isimlendirilmiştir. Poisson denklemi

Görüntü yük yöntemi, elektrostatikte kullanılan bir soru çözüm tekniğidir. İsimlendirmenin kökeni problemdeki sınır koşullarını bazı sanal yükler ile değiştirme yönteminden gelir.

Elektromanyetik dalga denklemi, elektromanyetik dalgaların bir ortam boyunca ya da bir vakum ortamı içerisinde yayılmasını açıklayan, ikinci dereceden bir kısmi diferansiyel denklemdir. Denklemin, ya elektrik alanı E ya da manyetik alan B cinsinden yazılan homojen formu şöyledir:

Burada, en yaygın olarak kullanılan koordinat dönüşümü bazılarının bir listesi verilmiştir. Kısmi türevler alınırken çarpımın türevi gibi davranıldığı akıldan çıkarılmamalıdır. Bir örnek olarak fonksiyonunda üç çarpım vardır

<span class="mw-page-title-main">Gauss fonksiyonu</span>

Matematikte Gauss fonksiyonu, bir fonksiyon biçimidir ve şöyle ifade edilir:

<span class="mw-page-title-main">Elektromanyetizmanın eşdeğişim formülasyonu</span>

Klasik manyetizmanın eşdeğişimli formülasyonu klasik elektromanyetizma kanunlarının(özellikle de, Maxwell denklemlerini ve Lorentz kuvvetinin) Lorentz dönüşümlerine göre açıkça varyanslarının olmadığı, rektilineer eylemsiz koordinat sistemleri kullanılarak özel görelilik disiplini çerçevesinde yazılma sekillerini ima eder. Bu ifadeler hem klasik elektromanyetizma kanunlarının herhangi bir eylemsiz koordinat sisteminde aynı formu aldıklarını kanıtlamakta kolaylık sağlar hem de alanların ve kuvvetlerin bir referans sisteminden başka bir referans sistemine uyarlanması için bir yol sağlar. Bununla birlikte, bu Maxwell denklemlerinin uzay ve zamanda bükülmesi ya da rektilineer olmayan koordinat sistemleri kadar genel değildir.

<span class="mw-page-title-main">Stres-enerji tensörü</span>

Stres-enerji tensörü, fizikte uzayzaman içerisinde enerji ve momentumun özkütle ve akısını açıklayan, Newton fiziğindeki stres tensörünü genelleyen bir tensördür. Bu, maddedinin, radyasyonun ve kütleçekimsel olmayan kuvvet alanının bir özelliğidir. Stres-enerji tensörü, genel göreliliğin Einstein alan denklemlerindeki yerçekimi alanının kaynağıdır, tıpkı kütle özkütlesinin Newton yerçekiminde bu tip bir alanın kaynağı olması gibi.

Teorik fzikte, Nordstrom kütleçekim kanunu genel göreliliğin bir öncülüdür. Açıkçası, Fin’li teorik fizikçi Gunnar Nordström tarafından 1912 de ve 1913 te önerilen iki ayrı teori vardır. Bunlardan ilki, hızla geçerliliğini yitirmiş, ancak ikinci, yerçekimi etkileri kavisli uzay-zaman geometrisi bakımından tamamen kabul eden. kütleçekim metrik teorisinin bilinen ilk örneği olmuştur. Nordstrom teorilerinin hiçbiri gözlem ve deney ile uyum içinde değildir. Bununla birlikte, ilkinin kısa sürede üzerindeki ilgiyi kaybetmesi, ikinciyi de etkilemiştir. İkinciden geriye kalan, kütleçekim kendine yeten relativistik teorisi. Genel görelilik ve kütleçekim teorileri için temel taşı niteliği görevi görmektedir. Bir örnek olarak, bu teori, pedagojik tartışmalar kapsamında özellikle yararlıdır.

Bu madde Vektör Analizi'ndeki önemli özdeşlikleri içermektedir.