İçeriğe atla

Uygunluk iyiliği

Uygunluk iyiliği İstatistiksel modelin, gözlem setine ne kadar iyi uyulduğunu açıklar. Uygunluk iyiliğinin ölçütleri genel olarak gözlemlenen değerler ile söz konusu modelde beklenen arasındaki tutarsızlığı özetlemektedir. Bu ölçütler istatistiksel hipotez testi işleminde örneğin; hatalı modellerin normalleştirilmesinin testinde, özdeşleşmiş dağılımlardan çıkarılan iki örneklemin aynı olup olmadığının testinde (Bkz. Kolmogorov-Smirnov sınaması), sonuç frekanslarının belirli bir dağılımı takip edip etmediğinin testinde (Bkz. Pearson ki-kare testi) kullanılabilir. Varyans analizinde, varyansın içerisindeki değişkenlerden biri karelerinin toplamının bir bölümünü oluşturabilir.

Dağılımın Uygunluğu

Verilen bir dağılımın bir veri setine uygun olup olmadığını değerlendirirken, aşağıdaki istatistiksel hipotez testleri ve bunların altındaki mevcut ölçütler kullanılabilir.

Regresyon Analizi

Regresyon Analizinde aşağıdaki başlıklar Uygunluk iyiliği ile ilgilidir.

  • Coefficient of determination(Uygunluk iyiliğinin R-kare ölçütü);
  • Lack-of-fit sum of squares;
  • Düşürülmüş Ki-kare testi.

Kaynakça

İngilizce Wikipedia "Goodness of fit" maddesi 13 Kasım 2016 tarihinde Wayback Machine sitesinde arşivlendi. (İngilizce) (Erişim:14.12.2016)

İlgili Araştırma Makaleleri

Varyans Analizi istatistik bilim dalında, grup ortalamaları ve bunlara bağlı olan işlemleri analiz etmek için kullanılan bir istatistiksel modeller koleksiyonudur. Varyans Analizi kullanılmaktayken belirlenmiş bir değişkenin gözlemlenen varyansı farklı değişim kaynaklarına dayandırılabilen varyans bileşenine ayrılır. En basit şekliyle varyans analizi birkaç grubun ortalamalarının birbirine eşit mi eşit değil mi olduğunu sınamak için bir çıkarımsal istatistik sınaması olur ve bu sınama iki-grup için yapılan t-test sınamasını çoklu-gruplar için genelleştirir. Eğer, çoklu değişkenli analiz için birbiri arkasından çoklu iki-örneklemli-t-sınaması yapmak istenirse bunun I. tip hata yapma olasılığını artırma sonucu doğurduğu aşikardır. Bu nedenle, üç veya daha fazla sayıda ortalamaların ististiksel anlamlığının sınama ile karşılaştırılması için Varyans Analizleri daha faydalı olacağı gerçeği ortaya çıkmaktadır.

<span class="mw-page-title-main">Betimsel istatistik</span>

Betimsel istatistik veya betimsel sayımlama istatistik bilim alanında üç temel kısmından biridir. Sayısal verilerinin derlenmesi, toplanması, özetlenmesi ve analiz edinilmesi ile ilgili istatistiktir.

İstatistiksel terimler, kavramlar ve konular listesi matematik biliminin çok önemli bir alt-bölümü olan istatistik biliminde içeriğinde bulunan konuların çok ayrıntılı olarak sınıflandırılması ile ortaya çıkarılmıştır. Milletlerarası İstatistik Enstitüsü bir enternasyonal bilim kurumu olarak istatistik bilimi konu ve terimlerini bir araya toplayıp 28 bilim dilinde karşılıklı olarak yayınlamıştır. Bu uğraşın sonucunun milletlerarası bilim camiasının büyük başarılarından biri olduğu kabul edilmektedir. Ortaya çıkartılan, istatistik bilimi içinde kullanılan ve bu bilime ait özel kavramların ve terimlerin listesi, tam kapsamlı olma hedeflidir ve böylelikle istatistik bilimi için bir Türkçe yol haritası yapılmış olmaktadır.

İstatistik biliminde normallik sınamaları bir seri parametrik olmayan istatistik sınamalar çeşididir. Normallik sınamalarının amacı verilmiş bir veri dizisinin normal dağılıma uygunluk iyiliğinin incelenmesidir. Bir sıra parametrik olmayan sınama geliştirilmiş bulunmasına rağmen birçok istatistikçi pratikte daha az kesin ve daha çok subjektif sağduyu ve ekpertiz gerektiren gösterim karşılaştırmalarını kullanmaktadır. Normallik sınamaları yalnız örneklem verilerinin doğrudan doğruya incelenmesinde kullanılmamakta, fakat özellikle ekonometrik analizlerde tek regresyon denklemi tahmininden sonra çıkan hataların normal olup olmadıklarının araştırılması için de çok kullanılmaktadırlar.

İstatistik bilim dalında, Jarque-Bera sınaması normal dağılımdan ayrılmayı ölçmek için kullanılan bir uygulama iyiliği ölçüsüdür. İlk defa bu sınamayi ortaya atan ekonometrici A.K.Bera ve C.M.Jarque adları ile anılmaktadır.

İstatistik biliminde önemli bir yeri olan parametrik olmayan istatistik parametrik olmayan istatistiksel modeller ve parametrik olmayan çıkarımsal istatistik, özellikle parametrik olmayan istatistiksel hipotez sınamalar ile ilgilenir. Parametrik olmayan yöntemler çok defa dağılımlardan serbest yöntemler olarak da anılmaktadır, çünkü verilerin bilinen belirli olasılık dağılımı gösteren kaynaklardan geldiği varsayımına dayanmamaktadır.

Kategorik verilerin analizi için uygulanabilen istatistiksel yöntemlerin listesi şöyle verilebilir:

Mann-Whitney U testi niceliksel ölçekli gözlemleri verilen iki örneklemin aynı dağılımdan gelip gelmediğini incelemek kullanılan bir parametrik olmayan istatistik testdir. Aynı zamanda Wilcoxon sıralama toplamı testi veya Wilcoxon-Mann-Whitney testi) olarak da bilinmektedir. Bu testi ilk defa eşit hacimli iki örneklem verileri için Wilcoxon (1945) ortaya atmıştır. Sonradan, Mann and Whitney (1947) tarafından değişik büyüklükte iki örneklem problemleri analizleri için uygulanıp geliştirilmiştir.

Shapiro-Wilk Testi, örneklemelerde temel alınan istatistiksel yığının normal dağıldığı bir hipotezin sağlamasını yapan istatistiksel bir hipotez testidir. Parametrik olmayan istatistikte normallik testleri arasında yer almaktadır. Shapiro-Wilk Testi, Amerikalı istatistikçi Samuel Shapiro ile Kanadalı istatistikçi Martin Wilk tarafından 1965 yılında ortaya konuldu. Normal dağılım için analizin grafiksel bilgisini bir anahtar şeklinde normal olasılık grafiği kullanarak özetlemeye yönelik tezlerinin sonucudur.

Anderson-Darling sınaması, istatistik bilim dalında, bir parametrik olmayan istatistik sınaması olup örneklem verilerinin belirli bir olasılık dağılımı gösterip göstermediğini sınamak için, yani uygunluk iyiliği sınaması için, kullanılmaktadır. Bu sınama ilk defa 1952'de Amerikan istatistikçileri T.W.Anderson Jr. ile D.A.Darling tarafından yayınlanmıştır. Bu sınama Kolmogorov-Smirnov sınamasının değiştirilmesi ve olasılık dağılımının kuyruklarına daha çok ağırlık verilmesi ile ortaya çıkartılmıştır.

İstatistik bilim dalında, Kolmogorov-Smirnov (K-S) sınaması parametrik olmayan istatistik olup Andrey Kolmogorov ve Nikolai Smirnov adlarındaki iki Sovyet bilim insanı tarafından oluşturulmuştur.

Medyan testi, bir örneklem kümesinin belirli bir medyan değerine sahip olan bir anakütleden gelip gelmediğinin araştırılmasında kullanılan çift taraflı bir testtir. istatistik biliminde çıkarımsal istatistik alanında bir parametrik olmayan istatistik aletidir ve Pearson'un ki-kare testinın özel bir halidir. Mood'un-medyan-testi veya Westenberg-Mood-medyan-testi veya Brown-Mood-medyan-testi olarak da anılır.

F-testi istatistik bilimi içinde bir sıra değişik problemlerde kullanılan parameterik çıkarımsal sınama yöntemidir. F-testi sıfır hipotezine göre gerçekte bir F-dağılımı gösteren sınama istatistiği bulunduğu kabul edilen hallerde, herhangi bir istatistiksel sınama yapma şeklidir. Bu çeşit bir istatistiksel sınama önce Ronald Fisher tarafından 1920'li yıllarda tek yönlü varyans analizi için ortaya atılıp kullanılmış ve sonradan diğer şekillerde F-dağılım kullanan sınamalar da ortaya atılınca, bu çeşit sınamalara genel isim olarak F-testi adı verilmesi Ronald Fisher anısına George W. Snecedor tarafından teklif edilip, istatistikçiler tarafından F-testi bir genel isim olarak kabul edilmiştir.

<span class="mw-page-title-main">Anlamlılık seviyesi</span>

Anlamlılık seviyesi, istatistik biliminde, İngiliz istatistikçi Ronald Fisher tarafından çıkartımsal hipotez sınama yönteminin kurulması sırasında kavramlaştırılmış özel bir manası olan bir bilimsel ve istatistiksel terimdir. İstatistiksel anlamlılık eğer bir sonucun gerçekleşme olasılık değerlendirilmesine göre olabilirliği düşük değil ise ortaya çıkar.

Tek anakütle ortalaması için parametrik hipotez sınaması veya tek-örneklem için sınama veya μ için sınama, bir rastgele örneklem ortalaması ile bu örneklemin çekilmiş olduğunu düşündüğümüz anakütlenin μ ile belirtilen "anakütle ortalaması" hakkında bir hipotez değeri belirtilmesinin anlamlı olup olmadığını araştırmamızı sağlayan parametrik hipotez sınamasıdır.

Çıkarımsal istatistikte, boş hipotez, sıfır hipotez ya da sıfır hipotezi, beklenenin dışında bir durumun olmadığını, mesela gruplar ya da değişkenler arasında bir ilişki bulunmadığını veya ölçülen iki olgunun arasında bir fark olmadığını kabul eden genel bir önermedir. Örneğin tıpta, denenen bir tedavinin etkisiz olması; hukukta, sanığın suçsuz olması birer boş hipotezdir. Modern bilim hipotezler üretip bunları test ederek ilerler; bir boş hipotezinin belirli bir güvenilirlik aralığında istatistiksel olarak kabul ya da reddedilmesi hipotez testleriyle yapılmaktadır.

Ki-kare testi veya χ² testi istatistik bilimi içinde bir sıra değişik problemlerde kullanılan bazıları parametrik olmayan sınama ve diğerleri parametrik sınama yöntemidir. Bu çeşit istatistiksel sınamalarda test istatistiği için "örnekleme dağılımı", sıfır hipotez gerçek olursa ki-kare dağılımı gösterir veya sıfır hipotez "asimptotik olarak gerçek" olursa, eğer sıfır hipotez gerçekse ve eğer örnekleme hacmi istenilen kadar yeterli olarak büyük ise bir ki-kare dağılımına çok yakın olarak yaklaşım gösterir.

Pearson ki-kare testi nicel veya nitel değişkenler arasında bağımlılık olup olmadığının, örnek sonuçlarının belirli bir teorik olasılık dağılımına uygun olup olmadığının, iki veya daha fazla örneğin aynı anakütleden gelip gelmediğinin, ikiden fazla anakütle oranının birbirine eşit olup olmadığının ve çeşitli anakütle oranlarının belirli değere eşit olup olmadığının araştırılmasında kullanılır. İstatistik biliminin çıkarımsal istatistik bölümünde ele alınan iki-değişirli parametrik olmayan test analizlerinden olan ve ki-kare dağılımı'nı esas olarak kullanan ki-kare testlerinden en çok kullanılanıdır. İngiliz istatistikçi olan Karl Pearson tarafından 1900'da ortaya çıkartılmıştır.

Student'ın t-testi istatistik bilimi içinde incelenen, eğer sıfır hipotez desteklenmekte ise test istatistiğinin bir Student's t-dağılımı gösterdiği hallerde uygulanan çıkartımsal istatistiksel hipotez sınamasıdır. Verilen iki değişik grup sayısal verinin birbirinden anlamlı olarak farklılık gösterip göstermemesini sınamak için kullanılabilir. En sıkça uygulanma örnekleri eğer test istatistiği içinde bulunan ölçek parametre faktörünün değerinin bir normal dağılım gösterdiği bilinmekte olduğu hallerde tatbik edilmektedir. Eğer test istatistiği içinde bulunan ölçek parametresi faktörünün değeri bilinmiyorsa ve bu faktör veriye dayayan bir kestirim ile ifade edilmekte ise test istatistiği bir Student'ın t-dağılımı gösterebilir.

<span class="mw-page-title-main">Matematiksel istatistik</span> matematiksel yöntemlerin kullanıldığı olası istatistikler

Matematiksel istatistik, istatistiksel veri toplama tekniklerinin aksine, matematiğin bir dalı olan olasılık teorisinin istatistiğe uygulanmasıdır. Bunun için kullanılan özel matematiksel teknikler arasında matematiksel analiz, doğrusal cebir, stokastik analiz, diferansiyel denklemler ve ölçü teorisi bulunur.