İçeriğe atla

Uçbirleştirme (genetik)

pre-mRNA'da bulunan intron ve eksonlar. Ergin mRNA uçbirleştirme sonucu oluşur.

Genetikte uçbirleştirme (İngilizce splicing) transkripsiyon sonrasında RNA'daki bazı bölümlerin (intron'ların) çıkartılıp kalan kısımlarının (eksonların) birleştirilmesidir. Ökaryotlarda uçbirleştirme sonucunda prekürsör mesajcı RNA (pre-mRNA) ergin mesajcı RNA'ya dönüşür, bu da protein sentezinde kullanılır. Uçbirleştirme bir dizi biyokimyasal tepkimeden oluşur, bunlar splisozom adı verilen bir snRNP (İngilizce small nuclear ribonucleo-proteins, küçük çekirdeksel ribonükleoproteinler) kompleksi tarafından katalizlenir.

RNA'dan parçaların çıkarılıp kalan kısımların uçlarının birleştirilmesi süreci 1977'de Philip Sharp ve Richard J. Roberts tarafından bağımsız olarak keşfedildi.[1][2] Sharp ve Roberts bu keşiflerinden dolayı 1993'te Nobel Fizyoloji veya Tıp Ödülünü kazandılar.

Etimoloji

RNA'dan parçaların çıkarılıp kalan kısımların birleştirilmesi sürecini tarif etmek için kullanılan İngilizce sözcük, splicing ("splaysing" okunur; Almanca splissen 'den türeme), orijinal anlamıyla bir denizcilik terimi olup, kopmuş bir halatı tamir etmek amacıyla iki ucunu birleştirme işlemi (halat dikişi) için kullanılır. Bu denizcilik terimi, zaman içinde kalas, demiryolu rayı gibi başka cisimlerin uçlarının birleştirilmesi için ve 20 y.y.'da sinemacılıkta kopan filmin tamiri ve elektrik kablo birleştirmesi için kullanılmıştır (bkz. uç birleştirme (anlam ayrımı)). RNA'da ekson ve intronların keşfi üzerine bu terime ekson uçlarının birleştirilmesi kavramı da yüklenmiştir.[3] Bu biyolojik olguya Fransızca ve Almancada bulunmuş karşılıklar, épissage ve spleißen de aynı sekilde, genel kapsamlı "uç birleştirme" anlamını taşımaktadır. Splicing için Türkçede karşılık henüz yerleşmediği için, buradaki metinde, aynı anlam yükleme süreci uygulanarak "uçbirleştirme" terimi kullanılmıştır.

Uçbirleştirme yolları

Doğada RNA uç birleştirmesi birkaç yolla gerçekleşir. Uç birleştirmenin tipi çıkartılacak intronun yapısı ve bu tepkime için gereken katalizöre bağlıdır. Hangi yol kullanılırsa kullanılsın, çıkartılan intron kullanılmadan yıkıma uğrar.

Splisozomal intronlar

Splisozomal intronlar genelde ökaryotların protein kodlayıcı genlerinde bulunurlar. Uç birleşme için intronun içinde bir 3' birleştirme ucu, bir 5' birleştirme ucu, bir de bir dal noktası gereklidir. Uç birleştirme splisozom tarafından katalizlenir, bu, beş ribonükleoproteinden (snRNP'den; "snörp" diye okunur) oluşan bir RNA-protein kompleksidir. snRNP'lerdeki RNA'lar belli intron dizileri ile etkileşirler ve uçbirleşmenini katalizinde rol oynayabilirler. İki farklı tip splisozom bilinmektedir, esas (majör) ve ikincil (minör) splisozomlar farklı snRNP'lar içerir.

  • Majör splisozomlar
Majör splisozom, 5' uç birleşme konumunda GU ve 3' uç birleşme konumunda AG dizisi olan intronların uç birleştirmesinde rol oynar. Onu oluşturan snRNP'ler U1, U2, U4, U5, and U6 snRNP olarak adlandırılır. Bu tip uçbirleştirmeye "standart uçbirleştirme" (İng. canonical splicing) veya "kement yolu" (İng. lariat pathway) adı verilir, uçbirleştirmelerin %99'undan çoğunu kapsar. Buna karşın, intron uçlarındaki diziler GU-AG kuralına uymazsa bunun "standart dışı" uçbirleştirme (İng. noncanonical splicing) olduğu söylenir (bkz. aşağıda "minör splisozomlar").[4]* Minör splisozomlar
Minör splisozom majör splisozoma çok benzer, ancak uçbirleşme dizileri farklı olan ender intronları çıkartır. Hem minör hem majör splisozomda U5 snRNP bulunmasına karşın, minör splisozomda U1, U2, U4 ve U6 snRNP'ye benzer işlevleri olan U11, U12, U4atac ve U6atac adlı farklı snRNP'ler bulunur.[5]* Trans-uçbirleştirme
Trans-uçbirleştirme aynı RNA transkriptinin içinde yer almayan iki eksonun birleştirilmesidir. Splisozom aracılığıyla iki farklı prekürsör RNA'daki eksonlar birbirleriyle birleşirler. Trans-uçbirleştirme protozoalrda (tripanozomlar ve öglenoidlerde), sineklerde (Drosophila) ve solucan Caenorhabditis elegans 'ta görülmüştür.

Öz-uçbirleştirme

Öz-uçbirleştirme (İngilizce self-splicing) veya otokatalitik uçbirleştirme, ribozim oluşturabilen ender intronlarda meydana gelir, bunlarda splisozomun katalizörlük işlevi yalnızca RNA tarafından sağlanır. İki cins öz-uçbirleştiren intron vardır, bunlar Grup I ve Grup II katalitik intron diye adlandırılır. Grup I ve II intronların kullandığı mekanizma bir protein varlığını gerektirmese de uçbirleştirmenin yanlışsız olabilmesi için ATP gereklidir. Bu ATP'nin üretilmesi için çeşitli metabolizma enzimleri gereklidir. Grup I intronlu uçbirleştirmede iki transesterifikasyon tepkimesi vardır: 1) GDP, GTP veya GMP gibi bir kofaktörde yer alan bir guanin nükleozitin 3' OH grubu, 5' uçbirleşme konumundaki fosfata bağlanır. 2) İntronun 5' ucundaki 3' OH grubu bir nükleofil olur, ikinci bir transesterifikasyon ile iki ekson birleşir. İntron, lineer bir parça olarak salınır. Grup II intronlu uçbirleştirmenin mekanizması ise şöyledir: 1) İntrondaki belli bir adenozinin '2 OH grubu, 5' uçbirleştirme konumuna saldırır, böylece "kement" (lariat) oluşturur. 2) Eksonun 5' ucundaki nukleotidin 3' OH grubu, 3' uçbirletirme konumumu ile ikinci bir transesterifikasyonu tetikler, böylece iki ekson birleşir, intron ise kement biçimli bir parça olarak salınır.

tRNA uçbirleştirmesi

tRNA uçbirleştirmesi veya tRNA-benzeri uçbirleştirme, genelde tRNA'da meydana gelen ender bir uçbirleştirme biçimidir.

Uçbirleştirme tepkimesinin mekanizması splisozomal ve öz-uçbirleştirme yollarından farklıdır. RNA, ribonükleaz tarafından kesilir, eksonlar ligazlar tarafından birleştirilir. Bu tip uçbirleştirmenin katalizlenmesi için herhangi bir RNA unsur gerekli değildir.

Evrim

Uçbirleştirme canlılardaki tüm alem veya üst alemlerde görülür, ancak bu gruplar içinde uçbirleştirmenin yaygınlığı ve tipi çok fark gösterebilir. Ökaryotlar pek çok protein kodlayıcı mesajcı RNA ve bazı kodlamayıcı RNA'yı uçbirleştirir. Buna karşın prokaryotlar, ender olarak ve başlıca kodlamayıcı RNA'yı uçbirleştirir. Bu iki grup organizma arasındaki önemli bir diğer fark, prokaryotlarda splisozom yolunun bulunmamasıdır.

Uçbirleştirmenin Çeşitliliği
ÖkaryotlarProkaryotlar
Splisozomal+-
Öz-uçbirleştirme++
tRNA++

Grup II intronların yapısı spisozomun içinde bulunan snRNP'lerin yapısına çok benzediği için splisozomların Grup II intronlardan evrimleşmiş olabileceğini düşünülmektedir.[6]

Biyokimyasal mekanizma

Uçbirleştirmede rol oynayana diziler
Uçbirleştirmenin biyokimyasal mekanizması

Splisozomal uçbirleştirme ve öz-uçbirleştirme de iki aşamalı bir biyokimyasal süreçtir. Her aşama, RNA nükleotidleri arasında oluşan transesterifikasyon tepkimelerinden oluşur. tRNA uçbirleştirmesi farklıdır, transesterfikasyon ile meydana gelmez.

Splisozomal ve öz-uçbirleştirme transterifikasyon tepkimeleri biribirini izleyen iki reaksiyondan oluşur. Önce, splisozomun bir araya gelmesi sonucu konumu belirlenen spesifik bir "dal noktası" nükleotidinin 2' OH grubu, intronun 5' uçbirleştirme konumundaki ilk nükleotid üzerine bir nükleofilik saldırı yaparak "kement ara ürünü"nü oluşturur. İkinci aşamada, serbest kalmış 5' eksonun 3' OH grubu, intronun 3' uçbirleştirme konumundaki son nükleotide bir nükleofilik saldırı yapar, böylece iki ekson birleşir, kementli intron da salınır.

Splisozom tarafından ekson uçbirleştirmesi. Eksonlar mavi çubuklar, intron ise siyah bir çizgi olarak gösterilmiştir.

Splisozomal uçbirleştirmede snRNP'ler bu reaksiyonların gerçekleşmesini mümkün kılar. Bu süreç sırasında çeşitli snRNP'ler belli bir sıra içinde bir araya gelirler veya ayrışırlar:

  1. U1 intronun 5' ucuna bağlanır.
  2. U2 dallanma noktasına bağlanır.
  3. U4/U6 ikilisi U1 ve U2'ye yanaşarak intronun 5' ucu ile dallanma noktası arasında bir köprü kurarlar.
  4. U5 de komplekse katılır ve birleştirirlecek eksonların uçlarını bitiştirir.
  5. U4 ve U1 kompleksden ayrılırlar.
  6. Dallanma noktasındaki adenozinin 2'-OH grubu, intronun 5' ucunu keser.
  7. İntronun yukarı tarafındaki eksonun 3' ucundaki nükleotidin 3'-OH grubu, intronun öbür ucunu keser.
  8. Eksonların uçları birleşir ve intronun "kement" şekilli kalıntısı salınır.

SnRNP'ların RNA'ya bağlanması tümleyici nükleotit dizileri arasında baz ciftleşmleriyle gerşkleşir. Örneğin, snRNA U1, intronun 5' tarafındaki ekson-intron ekleminde bulunan konsensus dizisini tümleyici bir diziye sahiptir, bunun sayesinde RNA'nın orasına bağlanabilir. Ayrıca farklı snRNA'ların birbirlerine bağlanmalarını sağlayan RNA-RNA birleşme yerleri de mevcuttur.

Alternatif uçbirleştirme

Alternatif uçbirleştirme

Çoğu genin uçbirleştirmesinde, bir ekson birden fazla sayıda eksondan biri ile birleşebilir. Mesajcı RNA'nın ekson bileşiminin bu şekilde değişmesi sonucunda bir dizi farklı protein oluşur. Bu olguya alternatif uçbirleştirme denir.

Uçbirleştirmenin deneysel manipülasyonu

Uçbirleştirme tepkimesindeki aşamalar deneysel olarak değişirilebilir. Bu amaçla, snRNP bağlanma konumlarını,[7] kementi kapatan dal noktası nükleotidi[8] veya uçbirleştirme düzenleyici eleman bağlanma konumlarını[9] bloke edecek ters-anlamlı (İng. anti-sense) oligonükleotit veya oligonükleotit türevleri kullanılabilir.

Uçbirleştirme hataları

İntron ve eksonlarda mutasyonlar uçbirleştirmeyi engelleyebilir ve sonuç olarak kodlanan proteinin sentezini durdurabilirler.

Olabilecek mutasyonlar:

  • Uçbirleştirme konumunda bir mutasyon, o yerin işlevini kaybetmesine neden olur. Bunun sonucunda ekson kaybı, intron içlemesi veya erken stop kodonu oluşumu meydana gelebilir.
  • Bazı mutasyonlar uçbirleştirmede spesifisite kaybına yol açar. Uçbirleştirme konumunda değişime neden olarak proteinde amino asit katılma veya eksilmeleri veya daha muhtemel olarak, okuma çerçevesi (İng. reading frame) kaybı meydana gelir.
  • Transpozisyon sonucu DNA kaybı veya eklenmesi meydana gelebilir, bu da normalden daha uzun veya daha kısa eksonlara yol açabilir.

Proteinlerde uçbirleştirme

Proteinlerde de uçbirleştirme olabilir. Bunun biyokimyasal mekanizması RNA uçbirleştirmesinden tamamen farklıdır. Proteinin intein olarak adlandırılan belli bir bölümü, çıkartılır; ekstein olarak adlandırılan proteinin kalan kısımları birleşir. Protein uçbirleştirmesi ekmek mayasında gözlemlenmiştir.

Notlar

  1. ^ Spliced segments at the 5' terminus of adenovirus 2 late mRNA. Berget SM, Moore C, Sharp PA. Proc Natl Acad Sci U S A. 74(8):3171-5 1977
  2. ^ An amazing sequence arrangement at the 5' ends of adenovirus 2 messenger RNA. Chow LT, Gelinas RE, Broker TR, Roberts RJ. Cell. 12:1-8.1977
  3. ^ "Dictionary.com "splicing" tanımı". 21 Eylül 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 20 Mart 2008. 
  4. ^ Ng B, Yang F, Huston DP ve diğerleri. (Aralık 2004). "Increased noncanonical splicing of autoantigen transcripts provides the structural basis for expression of untolerized epitopes". J. Allergy Clin. Immunol. 114 (6). ss. 1463-70. doi:10.1016/j.jaci.2004.09.006. PMID 15577853. 
  5. ^ Patel AA, Steitz JA (2003). "Splicing double: insights from the second spliceosome". Nat. Rev. Mol. Cell Biol. 4 (12). ss. 960-70. doi:10.1038/nrm1259. PMID 14685174. 
  6. ^ P. A. Sharp, 1991, Science 254:663
  7. ^ Draper BW, Morcos PA, Kimmel CB (2001). "Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown". Genesis. 30 (3). ss. 154-6. doi:10.1002/gene.1053. PMID 11477696. 
    Sazani P, Kang SH, Maier MA ve diğerleri. (Ekim 2001). "Nuclear antisense effects of neutral, anionic and cationic oligonucleotide analogs". Nucleic Acids Res. 29 (19). ss. 3965-74. PMID 11574678. 1 Ağustos 2013 tarihinde kaynağından arşivlendi. Erişim tarihi: 3 Şubat 2008. 
  8. ^ Morcos, PA (2007). "Achieving targeted and quantifiable alteration of mRNA splicing with Morpholino oligos". Biochem Biophys Res Commun. 358 (2). ss. 521-7. doi:10.1016/j.bbrc.2007.04.172. PMID 17493584. 
  9. ^ Bruno IG, Jin W, Cote GJ (15 Ekim 2004). "Correction of aberrant FGFR1 alternative RNA splicing through targeting of intronic regulatory elements". Hum. Mol. Genet. 13 (20). ss. 2409-20. doi:10.1093/hmg/ddh272. PMID 15333583. 26 Ekim 2007 tarihinde kaynağından arşivlendi. Erişim tarihi: 3 Şubat 2008. (Epub August 27, 2004)

Kaynakça

Dış bağlantılar

  • Omurgalı hayvanların pre-mRNA'larının 5' ve 3' uçbirleştirme konumlarındaki konsensus dizileri [1]
  • Grup I, Grup II öz-uçbirleştirme ve splisozomlu özbirleştirmelerinin biyokimyasal mekanizma şemaları [2]
  • Splizomu döngüsü. [3]
  • Grup II intronlar ve splsozomdaki snRNA'ların benzerliği [4]
  • Majör, minör ve trans-uçbirleştirme mekanzimaları [5]

Ayrıca bakınız

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">DNA</span> Canlıların genetik bilgilerini barındıran molekül

Deoksiriboz nükleik asit veya kısaca DNA, tüm organizmaların ve bazı virüslerin canlılık işlevleri ve biyolojik gelişmeleri için gerekli olan genetik talimatları taşıyan bir nükleik asittir. DNA'nın başlıca rolü bilgiyi uzun süre saklamasıdır. Protein ve RNA gibi hücrenin diğer bileşenlerinin inşası için gerekli olan bilgileri içermesinden dolayı DNA; bir kalıp, şablon veya reçeteye benzetilir. Bu genetik bilgileri içeren DNA parçaları gen olarak adlandırılır. Bazı DNA dizilerinin yapısal işlevleri vardır, diğerleri ise bu genetik bilginin ne şekilde kullanılacağının düzenlenmesine yararlar.

<span class="mw-page-title-main">RNA</span> nükleotitlerden oluşan polimer

Ribonükleik asid (RNA), bir nükleik asittir, nükleotitlerden oluşan bir polimerdir. Her nükleotit bir azotlu baz, bir riboz şeker ve bir fosfattan oluşur. RNA pek çok önemli biyolojik rol oynar, DNA'da taşınan genetik bilginin proteine çevirisi (translasyon) ile ilişkili çeşitli süreçlerde de yer alır. RNA tiplerinden olan mesajcı RNA, DNA'daki bilgiyi protein sentez yeri olan ribozomlara taşır, ribozomal RNA ribozomun en önemli kısımlarını oluşturur, taşıyıcı RNA ise protein sentezinde kullanılmak üzere kullanılacak aminoasitlerin taşınmasında gereklidir. Ayrıca çeşitli RNA tipleri genlerin ne derece aktif olduğunu düzenlemeye yarar.

<span class="mw-page-title-main">Mesajcı RNA</span> Bir protein üretmek için ribozom tarafından okunan RNA

Mesajcı RNA (mRNA), sentezlenecek bir proteinin amino asit dizisine karşılık gelen kimyasal şifreyi taşıyan bir moleküldür. mRNA, bir DNA kalıptan transkripsiyon yoluyla sentezlenir ve protein sentez yeri olan ribozomlara, protein kodlayıcı bilgiyi taşır. Burada, çevirim (translasyon) süreci sonucu, RNA polimerindeki bilgi ile bir amino asit polimeri üretilir. Nükleik asitlerin amino asit dizilerine karşılık gelen bölgelerindeki her üç baz, proteindeki bir amino asite karşılık gelir. Bu üçlülere kodon denir, her biri bir amino asit kodlar, bitiş kodonu ise protein sentezini durdurur. Bu işlem iki diğer RNA türünü daha gerektirir: taşıyıcı RNA (tRNA) kodonun tanınmasına aracılık eder ve ona karşılık gelen amino asiti getirir; ribozomal RNA (rRNA) ise ribozomdaki protein imalat mekanizmasının kataliz merkezidir.

<span class="mw-page-title-main">Taşıyıcı RNA</span> protein sentezinde görevli bir RNA

Taşıyıcı RNA hücrelerde protein sentezi sırasında büyüyen polipeptit zincirine spesifik bir amino asit ekleyen küçük bir RNA molekülüdür. Amino asidin bağlanması 3' ucundadır. Bu kovalent bağlantı aminoasil tRNA sentetaz tarafından katalizlenir. Ayrıca, antikodon olarak adlandırılan üç bazlık bir bölge vardır, bu bölge mRNA üzerinde kendisine karşılık gelen üç bazlık bir kodon bölgesi ile baz eşleşmesi yapar. Her tip tRNA molekülü sadece tek tip bir amino asite bağlanabilir, ama genetik kod aynı amino asite karşılık gelen birden çok kodon bulunduğu için, farklı antikodonlara sahip tRNA'lar aynı amino asidi taşıyabilir.

<span class="mw-page-title-main">Ribozomal RNA</span> Ribozomun RNA bileşeni

Ribozomal RNA (rRNA), ribozomlarda bulunan bir RNA tipidir, ribozomun protein senteziyle ilişkili katalitik fonksiyonundan sorumludur. Ribozomal RNA'nın görevi, mRNA'daki bilginin translasyon süreci sırasında amino asit dizisine çevrilmesi için taşıyıcı RNA (tRNA) ile etkileşmek ve uzayan peptit zincirine amino asit takmaktır. Hücre sitoplazmasında serbest halde bulunan RNA'nın %80'i rRNA'dan oluşur.

<span class="mw-page-title-main">Protein biyosentezi</span>

Protein biyosentezi, hücrenin protein sentezlenmesi için gereken bir biyokimyasal süreçtir. Bu terim bazen sadece protein translasyonu anlamında kullanılsa da transkripsiyon ile başlayıp translasyonla biten çok aşamalı bir süreçtir. Prokaryotlarda ve ökaryotlarda ribozom yapısı ve yardımcı proteinler bakımından farklılık göstermesine karşın, temel mekanizma korunmuştur.

Hetero nükleroprotein parçacıkları ökaryotik hücrelerde yeni sentezlenen bir RNA'nın transkripsiyon sonrası değişime uğrayana kadar proteinlerle kaplanmış halidir. Bu RNA/protein komplekslerinde bulunan başlıca proteinler protein K ve polipirimidin dizisi bağlanma proteinidir. PTB, splisozomun polipirimidin dizilerine bağlanmasına engel olarak ekson birleşmesini durdurur.

<span class="mw-page-title-main">Çiçek virüsü</span> virüs türü

Çiçek virüsü veya Variola virus Poxviridae familyasına, Chordopoxvirinae alt familyasına, Orthopoxvirus cinsine ait olan bir DNA virüsüdür ve çiçek hastalığına sebep olur.

<span class="mw-page-title-main">Transkripsiyon (genetik)</span> bir DNA parçasının RNAya kopyalanması süreci

Transkripsiyon, yazılma veya yazılım, DNA'yı oluşturan nükleotit dizisinin RNA polimeraz enzimi tarafından bir RNA dizisi olarak kopyalanması sürecidir. Başka bir deyişle, DNA'dan RNA'ya genetik bilginin aktarımıdır. Protein kodlayan DNA durumunda, transkripsiyon, DNA'da bulunan genetik bilginin bir protein veya peptit dizisine çevirisinin ilk aşamasıdır. RNA'ya yazılan bir DNA parçasına "transkripsiyon birimi" denir. Transkripsiyonda hata kontrol mekanizmaları vardır, ama bunlar DNA çoğalmasındakinden daha az sayıda ve etkindirler; dolayısıyla transkripsiyon DNA çoğalması kadar aslına sadık değildir.

RNA polimerazlar, bir DNA veya RNA molekülündeki bilgiyi RNA molekülü olarak kopyalayan bir enzimler ailesidir. Bir gende yer alan bilginin RNA molekülü olarak kopyalanma işlemi transkripsiyon olarak adlandırılır. Hücrelerde RNAP genlerin RNA zincirleri halinde okunmasını sağlar. RNA polimeraz enzimleri, tüm canlılarda ve çoğu virüste bulunur. Kimyasal bir deyişle, RNAP, bir nükleotidil transferaz enzimidir, bir RNA molekülünün üç ucunda ribonükleotitlerin polimerleşmesini sağlar.

<span class="mw-page-title-main">Prokaryotlarda DNA replikasyonu</span>

Prokaryotik hücrelerin DNA ikileşmesinde, ikili sarmal açılır ve sentezin başladığı yer olan ikileşme çatalı oluşur. Proteinler açılan sarmalı kararlı kılar ve ikileşme çatalının önünde oluşan sarılma gerilimini hafifletirler. Sentez, kalıp boyunca belirli bölgelerden RNA Primazın, DNA Polimeraz III'ün polimerizasyonu başlatabileceği serbest 3'-OH ucunu sağlayan kısa bir RNA parçasını sentezlemesiyle başlar. İkili sarmalın antiparalel yapısından dolayı polimeraz III, kesintili zincirde 5'-3' yönünde sürekli DNA sentezi yapar. Çatalın solunda DNA sentezi 5'-3' yönünde kesintisiz olarak devam eder. Kesintili zincir denen karşı zincirde kısa Okazaki parçaları sentezlenir ve bu parçalar daha sonra DNA ligaz ile birleştirilir. DNA Polimeraz I, RNA primerini uzaklaştırır ve yerine DNA sentezler, ortaya çıkan polinükleotidler DNA ligaz ile birleştirilir. Böylece sentezi tamamlanan iki yeni çift dallı DNA molekülü birbirinden ayrılr ve biri atasal hücrede kalırken diğeri oğul hücreye gider.

Uç birleştirme aşağıdaki anlamları taşıyabilir:

<span class="mw-page-title-main">Doğrultu (moleküler biyoloji)</span>

Moleküler biyolojide doğrultu, bir nükleik asit ipliğini oluşturan nükleotitlerin uçuca eklenme yönüyle ilişkildir. Kimyasal adlandırma konvansiyonu gereği, bir nükleotit şeker halkasındaki karbon atomları 1', 2', 3', 4' ve 5' olarak adlandırılır. Nükleik asitlerin doğada sentezlenmeleri sırasında büyüyen zincirin bir ucundaki şeker grubunun serbest bir 3' hidroksil (-OH) grubu vardır, öbür ucundaki şekerin ise serbest bir 5'-OH grubu vardır. Bu iki uca, sırasıyla 3' ve 5' uçları denir. Nükleik asidin sentezi sırasında polimeraz enzimi 3'-OH grubuna bir fosfodiester bağı ile yeni bir nükleotit bağlar. Konvansiyon olarak bir iplikli DNA ve RNA dizileri yazılırken bazların kısaltmaları 5'-3' doğrultusunda yazılır.

<span class="mw-page-title-main">DNA ligaz</span> DNA Replikasyonu Sırasında İki DNA Sarmalını Birleştiren Ligaz Tipi

Moleküler biyolojide DNA ligaz iki DNA molekülünü uç uca birleştiren özel bir ligaz tipidir. DNA ligaz DNA tamiri, DNA ikileşmesinde rol oynar. Ayrıca, ökaryotlarda mayoz bölünmedeki krosoverde ve memelilerde, bağışıklık sisteminin çeşitliliğini sağlayan rekombinasyon süreçlerinde rol oynarlar. DNA ligaz enzimi moleküler biyoloji laboratuvarlarında rekombinant DNA uygulamalarında kullanılır.

Psödogenler işlevsel genlerin çalışmayan evrimsel akrabalarıdır, bunlar protein kodlama yeteneklerini kaybetmiş veya bir şekilde artık hücre içinde ifade edilmemektedir. Bazılarının intron veya promotörleri yoksa da, çoğunun gen-benzeri bazı özellikleri vardır, bunlar, protein veya RNA kodlamalarına engel olan çeşitli tip mutasyonlardan dolayı işlevsizdir. Bu terim 1977'de Jacq ve çalışma arkadaşları tarafından türetilmiş, sahte anlamına gelen "psödo-" öneki ve "gen" sözcüğünden türetilmiştir.

Kodlamayan RNA, proteine çevirisi yapılmayan işlevsel bir RNA molekülüdür. İngilizce literatürde non-coding RNA''nın kısaltması olan ncRNA olarak anılırlar, daha az sıklıkla kullanılan diğer adları non-protein-coding RNA, non-messenger RNA, small non-messenger RNA, functional RNA. Küçük RNA terimi bakterilerde kullanılır. Kodlamayan RNA'nın yazıldığı DNA dizileri RNA geni veya kodlamayan RNA geni olarak adlandırılır.

Gen bulma, genomik DNA'da biyolojik olarak işlevsel olan dizileri algoritmik olarak tespit etmekle ilgili hesaplamalı biyolojinin bir sahasıdır. İşlevsel dizilerden kastedilen genelde protein kodlayıcı genler olmakla beraber, RNA genleri ve düzenleyici bölgeler de dahil edilir. Bir organizmanın genomu dizilendikten sonra bu genomun anlaşılabilmesi için ilk ve en önemli adım gen bulmadır.

Ökaryotik transkripsiyon, ökaryotik hücrelerin DNA'da depolanan genetik bilgiyi RNA replika birimlerine kopyalamak için kullandıkları ayrıntılı bir işlemdir. Gen transkripsiyonu hem ökaryotik hem de prokaryotik hücrelerde görülür. Tüm farklı RNA tiplerinin transkripsiyonunu başlatan prokaryotik RNA polimerazının aksine, ökaryotlardaki RNA polimerazlar, her biri farklı bir gen tipini kodlayan üç varyasyona sahiptir. Bir ökaryotik hücre, transkripsiyon ve translasyon işlemlerini ayıran bir çekirdeğe sahiptir. Ökaryotik transkripsiyon, DNA'nın nükleozomlara ve daha yüksek dereceli kromatin yapılarına paketlendiği çekirdeğin içinde meydana gelir. Ökaryotik genomun karmaşık oluşu, kompleks ve çok çeşitli bir gen anlatım kontrol mekanizmasının varlığını gerektirir.

<span class="mw-page-title-main">Santral dogma (moleküler biyoloji)</span> Biyolojik bir sistem içindeki genetik bilgi akışının açıklanması

Moleküler biyolojinin santral (merkezi) dogması, biyolojik bir sistem içindeki genetik bilgi akışının bir açıklamasıdır. Orijinal anlamı bu olmasa da, genellikle "DNA RNA'yı, RNA proteini yapar" şeklinde ifade edilir İlk olarak 1957'de Francis Crick tarafından ifade edilmiş, 1958'de ise yayınlanmıştır.

Biyosentez, substratların canlı organizmalarda daha karmaşık ürünlere dönüştürüldüğü çok aşamalı, enzim katalizli bir süreçtir. Biyosentezde basit bileşikler modifiye edilir, diğer bileşiklere dönüştürülür veya makromoleküller oluşturmak üzere birleştirilir. Bu süreç genellikle metabolik yollardan oluşur. Bu biyosentetik yollardan bazıları tek bir hücresel organel içinde yer alırken diğerleri birden fazla hücresel organel içinde yer alan enzimleri içerir. Bu biyosentetik yolların örnekleri arasında çift katlı lipit katmanının bileşenlerinin ve nükleotidlerin üretimi yer alır. Biyosentez genellikle anabolizma ile eş anlamlıdır ve bazı durumlarda birbirinin yerine kullanılır.