İçeriğe atla

Turbo jeneratör

250 kW buhar türbini jeneratör seti (1910)
Jeneratör setli 500 MW Siemens çok kademeli buhar türbini (arkada, kırmızı)
Parsons'ın ilk 1 MW’lık buhar türbini tahrikli Turbojeneratörü" (1900 yılında Almanya'nın Elberfeld kentindeki bir tesis için üretilmiştir)
Ottó Bláthy, bir Ganz turbo jeneratörünün armatüründe (1904)
Bir buharlı lokomotif‘in 500W/24V'luk küçük RP4 buhar turbo jeneratör seti: alternatör (solda) + türbin (sağda)

Turbo jeneratör, elektrik gücü üretmek için su türbini, buhar türbini veya gaz türbini miline bağlı bir elektrik jeneratörüdür.[note 1]

Dünyada üretilen elektriğin çoğunu buhar gücüyle çalışan büyük turbo jeneratörler sağlar. Buhar gücüyle çalışan turbo-elektrik gemilerde de kullanılır.[1]

Gaz türbinleriyle çalıştırılan küçük turbo jeneratörler çoğunlukla yardımcı güç ünitesi (APU, özellikle uçaklarda) kullanılır.

Tarihçe

Ganz Şirketi'nde 1886 civarında türbin yapımı

İlk turbo jeneratörler, su türbinleriyle çalışan elektrik jeneratörleriydi. İlk Macar su türbini, Ganz Works mühendisleri tarafından 1866'da tasarlandı. Dinamo jeneratörleriyle endüstriyel ölçekte üretim ancak 1883'te başladı.[2]

Mühendis Charles Algernon Parsons, 1887'de bir dinamoyu kullanarak buharla çalışan bir DC turbo jeneratörü kanıtladı[3] ve 1901'de Almanya'nın Eberfeld kentindeki bir tesise megavat gücünde ilk büyük endüstriyel AC turbo jeneratörünü tedarik etti.[4] Turbo jeneratörler ayrıca buharlı lokomotiflerde vagonların aydınlatılması için güç kaynağı ve ısıtma sistemleri için su pompaları olarak kullanıldı.

Jeneratörün yapısal özellikleri

Bir elektrik jeneratörüne bağlı hidrolik türbinin kesit görünümü.
A Jeneratör
B Türbin
1 Stator
2 Rotor
3 Ayarlanabilir valfler
4 Türbin kanatları
5 Su akışı
6 Dönme ekseni (mil)
Siyah Pompa enerji santralinde 1000 MVA'lık turbo jeneratör: (sarı silindirik gövdede; önünde sarı kare gövdede fırçasız ikaz makinesi).
Tam kutuplu makinenin prensibi: alan sargısı rotorun içinde dağıtılır
Balakovo nükleer santrali turbojeneratörünün açık hali

Turbo jeneratörler, buhar ve gaz türbinlerine özgü yüksek mil dönüş hızlarında çalışır. Turbo jeneratörün rotoru, genellikle iki kutuplu çıkıntılı olmayan kutup tipindedir.[5]

Turbo jeneratörün normal hızı, 50 Hz'de dört veya iki kutuplu 1500 veya 3000 dev/dak'dır (60 Hz'de dört veya iki kutuplu 1800 veya 3600 dev/dak).

Rotor ince, tam kutuplu bir rotor olarak tasarlanmıştır. Maksimum rotor çapları yaklaşık 1,2…1,3 m'dir.[6] Dört kutuplu makineler için olası rotor çapları daha büyüktür (1500 rpm için yaklaşık 2 m). Sınır değerleri merkezkaç kuvvetlerinden kaynaklanır[1] ve tasarım için 1,2 aşırı hız faktörü (nominal hıza göre %20 aşırı hız) kullanılmıştır.[7]

Turbo jeneratörün dönen parçaları yüksek çalışma hızı nedeniyle zorlu mekanik streslere maruz kalır. Büyük turbo alternatörlerin rotorunu mekanik olarak mukavim yapmak için, rotor krom-nikel-çelik veya krom-nikel-molibden gibi alaşım çeliklerinden dövülerek yapılır. Çevredeki sargıların çıkıntısı, çelik tutma halkalarıyla sabitlenir. Yuvaların üstündeki ağır manyetik olmayan metal kama, alan sargılarını santrifüj kuvvetlerine karşı tutar.

Rotor yuvalarında mika ve asbest gibi sert bileşimli yalıtım malzemeleri kullanılır. Bu malzemeler yüksek sıcaklığa ve yüksek ezme kuvvetlerine dayanabilir.[8]

Büyük turbo jeneratörlerin statoru iki veya daha çok parçadan oluşabilirken, küçük turbo jeneratörlerin statoru tek parçadır.[9]

Stator

Stator stator mahfazasından ve stator sargısının takılı olduğu lamine çekirdekten oluşur.

Stand muhafazası kaynaklı çelik konstrüksiyondan oluşur ve lamine çekirdeğin statik ve dinamik kuvvetlerini emer. İç kısımda kaynaklı sac kanallar ve soğutma boruları vardır. Daha büyük senkron makineler için, ısı eşanjörleri (yedek hava/su soğutucuları veya hidrojen/su soğutucuları), üreticiye bağlı olarak stator muhafazasına dikey veya yatay olarak monte edilir.

Hidrojen soğutmalı makineler için gövde gerekli basınç testiyle basınca dayanıklı olacak şekilde tasarlanmıştır. Bağlantı flanşları (örneğin yağlama yağ boruları için) ve elektrik bağlantı kutuları (örneğin ölçüm cihazları) ve jeneratör çıkışı gibi ana elektrik bağlantıları mahfazanın dış tarafındadır. Muhafaza güvenli temel bağlantısı için tasarlanmıştır.

Sac metal paketi katmanlı ayrı metal levha parçalarından, dinamo levhalar oluşur. girdap akımları'nı önlemek için elektriksel olarak yalıtılmışlardır. Dolaylı olarak soğutulan makinelerde, levha istifinde düzenli aralıklarla soğutma yarıkları oluşturulacak şekilde aralayıcı çubuklara sahip levhalar sağlanır. Sacların imalat toleransları nedeniyle, sac yığınında düz bir çizgi elde etmek amacıyla katmanlama çok uzun bir süre boyunca karmaşık şekilde elle gerçekleştirildi.

Sac paketi her iki taraftan baskı plakaları/parmakları ile sıkıştırılmıştır. Stator sargısının sarım başlıklarını tutmak için sabitleme sepetleri uçlara takılmıştır. Paralel anahtarlama hatları enerji çıkış tarafına bağlanır.

Stator sargısı, U, V ve W olarak adlandırılan, 120° (kutup çifti başına) kaydırılmış üç sargı telinden oluşur. Yıldız veya üçgen bağlantısıyla bağlanabilirler. Jeneratörü çalıştıran makineler, olası bir toprak arızasını tespit etmek için her zaman bir yıldıza bağlanır. Jeneratör terminalleri uluslararası olarak LINE L1, L2, L3 (eski adıyla R, S, T) olarak belirlenmiştir. Stator sargısı, özel olarak bükülmüş, ayrı ayrı yalıtılmış bakır çubuklardan, Roebel çubuklarından oluşur. Yüksek performanslı senkron jeneratörlerde, doğrudan su soğutması için Roebel çubuklarına dalga kılavuzları yerleştirilmiştir. Normal çalışma koşulları altında elektrik yalıtımı alanında özel zorluklar ortaya çıkar - jeneratör nominal gerilimleri genellikle 27 kV'a kadar çıkar ve eş zamanlı yüksek termal yük, kısmi deşarja dayanıklı mika bazlı yalıtım sistemlerinin yanı sıra mekanik olarak kullanılır - sarım kafalarındaki titreşimler. Statorun yapısı temel olarak üç fazlı asenkron makineyle aynıdır.

Rotor

Makaralı rotor veya tam tamburlu rotor da denilen tam kutuplu rotor, dönel olarak simetrik yapılıdır ve çok yüksek mekanik gerilimler göz önüne alındığında yüksek derecede temperlenmiş dövme parçadan yapılmıştır.

Bu çok sıkı kalite ve test yöntemlerine tabidir. Tahrik makinesinin kaplin flanşları ve gerekirse fırçasız tahrik makinesi ya daraltılır ya da dövme işleminin ayrılmaz bir parçasıdır.

Rotor (uyarma) sargısına uyum sağlaması için, rotor kovanında uzunlamasına yönde oluklar frezelenir ve uyarma akımı besleme hattı için rotorda eksenel delikler açılır. Rotor sargısı, yarıklara izolasyon halinde, katman katman yerleştirilir ve son olarak büyük merkezkaç kuvvetlerini emmesi için yarık kapatma takozları adı verilen parçalarla sabitlenir.

Kısmen gümüş kaplamalı yarık takozları ile rotorun yüzeyi, "damper sargısı" denilen, elektriği ileten bir kafes oluşturur. Damper sargısı şok yüklerini (kutup çarkı salınımları) azaltmaya yarar.

Rotor sargısı ve rotor kovanındaki özel soğutucu hava/gaz kanalları, rotor sargısındaki uyarma akımının neden olduğu ısının dağıtılmasını sağlar. Rotor sargısının herbir katmanı, özel bir işlem kullanılarak yuvaların dışına lehimlenir, manyetik olmayan özel çelikten yapılmış daraltılmış bir rotor kapağı ile merkezkaç kuvvetlerine karşı yalıtılmış ve korunmuştur. Bu kapak bölgesinde kapak yalıtımına ve soğutmaya özellikle dikkat edilir.

Rotor ve ilgili stator çekirdeği fan ile soğutulur. Performans sınıfına bağlı olarak her iki tarafta birer fan, hatta çok kademeli fan (kompresör) bile sağlanır.

Güvenli çalışma için düzgün çalışma gereklidir, bu nedenle rotor bir balans makinesinde dengelenir ve rotor sargısının son elektriksel yalıtım kontrolü ile birlikte aşırı hız testine (%120 nominal hız) tabi tutulur.

Yüksek kalite standardına rağmen rotor sargısı, dönüş arızası koruması ve rotor toprak arızası koruması tarafından izlenir. Arıza durumunda simetrik olmayan manyetik alan oluşur ve bunun sonucunda izin verilmeyen dengesiz bir yük oluşur. Bu, rotor rulmanında kabul edilemez ısı kayıplarına yol açan girdap akımları yaratır.

Uyarma

Uyarma sargısını doğru akım ile beslemek için, eski turbo jeneratörlerde milin üzerine bir doğru akım makinesi yerleştirilirdi (uyarıcı makine). Daha sonra doğru akım, karbon fırçalar ve kayar halkalar aracılığıyla turbo jeneratörünün rotoruna sağlanmalıydı.

Günümüzde büyük turbo jeneratörlerde iki ana uyarma türü yaygındır:

  • Fırçasız uyarma dönen uyarıcılı (örneğin, düzeltme için rotor şaftının üzerine veya içine monte edilmiş diyotlarla aynı şaft üzerinde oturan bir dış kutup makinesi). Kontrol edilebilir bir güç dönüştürücüsü tarafından sağlanan doğru akımla harici olarak uyarılır.
  • Statik uyarma: Bir güç dönüştürücü sistemi, bir fırça köprüsü (kayma halkaları ve karbon fırçalar) aracılığıyla iç kutup makinesinin rotor sargısına aktarılan doğru akımı sağlar. Fırçalar çalışma sırasında değiştirilebilir.

Bahsedilen iki yöntemden hangisinin kullanılacağı, ilgili üreticinin felsefesine ek olarak, öncelikle enerji santrali operatörünün gereksinimlerine bağlıdır. Her iki yöntemin de avantajları ve dezavantajları vardır:

  • Dönen uyarıcı aşınmasızdır ancak acil durumlarda bakım/onarım yalnızca makine dururken yapılabilir. İlgili harici uyarma dönüştürücüsü tarafından sağlanacak akımlar nispeten düşüktür, ancak uyarma süresi sabitlerinden dolayı çalışma durumundaki hızlı değişiklikler sırasında uyarma akımının izlenmesi oldukça yavaştır. Jeneratör terminallerindeki voltaj düşüşlerini telafi etmek için dönüştürücünün, normal çalışmaya kıyasla çok büyük voltaj rezervleri (tavan uyarımı adı verilen) sağlaması gerekir.
  • Statik konvertör uyarımı genel olarak biraz daha karmaşıktır ve aşınma ve yıpranmaya tabidir, ancak büyük ölçüde jeneratör çalışırken bakımı yapılabilir. Tam uyarma akımı sağlanmalı ve rotora aktarılmalıdır; Büyük makineler için 10 kA'ya kadardır. Öte yandan, statik uyarı, yük değişikliklerine çok hızlı tepki verebilir, böylece tavan voltajı, dönen bir uyarıcıya göre önemli ölçüde daha düşük olabilir. Bu dinamik avantaj, birçok yenilenebilir enerji üreticisinin bulunduğu şebekelerde artan yük akış dinamikleri nedeniyle giderek daha önemli hale geliyor. Kural olarak, şebeke operatörleri, kısa süreli kesintiler durumunda enerji santrali operatörlerinin jeneratör sistemlerine dinamik ve güvenilirlik açısından belirli minimum gereksinimler koyarlar ve bu genellikle dönen uyarıcılarla sağlanamaz.

Uyartım, jeneratörün çalışma davranışı açısından çok önemlidir, çünkü uyarma akımının ayarlanması, terminal voltajının genliğini ve dolayısıyla jeneratörün şebekeye (Aktif güç, türbin hızı veya torku tarafından belirlenir) sunabileceği reaktif gücü düzenler. Turbo jeneratörlerin uyarma gücü jeneratör gücünün yaklaşık %0,5 ila %3'üdür.

Ayrıca, yavaşça dönen çıkıntılı kutuplu makinelerin aksine, turbo jeneratörler rölantiye dayanıklı değildir ve yalnızca hafif bir aşırı hıza izin verir. Ani bir yük düşüşü durumunda (en kötü durumda, öngörülemeyen bir şebeke bağlantısının kesilmesi nedeniyle), mekanik hasarı önlemek için türbinin otomatik olarak hızlı şekilde kapatılması derhal gerçekleştirilmelidir. Bu amaçla, jeneratörü çalıştıran buhar türbinlerinin, türbinlere tüm buhar kütle akışını bir saniyeden daha kısa sürede durduran ve yönlendirme istasyonları aracılığıyla yoğunlaştırıcıya yönlendiren, hızlı kapatma valfleri denilen valfleri vardır. Bu, türbinlerin artık tork üretemeyeceği anlamına gelir. Aynı zamanda turbo jeneratörün uyarısı da kaldırılır.

Bir turbo jeneratörün jeneratör voltajı, 40 MVA aralığındaki çıkışlar için 6,3 kV'dir; 1000 MVA'nın üzerindeki büyük turbo jeneratörler için 27 kV'a kadar ulaşılır. Daha büyük sistemlerdeki akımlar 10 kA civarındadır. Jeneratör voltajı, bir jeneratör devre kesici aracılığıyla makine dairesinin hemen yakınında kurulan makine transformatörüne beslenir ve bu, onu yüksek voltaj şebekesinde örneğin 400 kV'luk olağan voltaja dönüştürür.

Soğutma

Drax santralinde 660 MVA turbo jeneratör

Soğutma tipi turbo jeneratörlerin performansına bağlı olarak seçilir.

  • Çıkışı 300 MW'a kadar olan makineler için makine öncelikli olarak temiz hava ile soğutulur.
  • 250 MW ile 450 MW arasındaki güç aralığında soğutma genellikle büyük özgül ısı kapasitesi havadan daha etkili soğutma sağlayan hidrojen kullanılarak gerçekleştirilir.
  • Şu anda 1.800 MW'a kadar olan en güçlü turbo jeneratörlerde soğutma, hidrojen ve saf su ile birlikte gerçekleşmektedir. Hedeflenen ısı dağıtımı için turbo jeneratörün sargıları dalga kılavuzlarıyla tasarlanmıştır. Bu dalga kılavuzları, içinde boşluk bulunan bakır çubuklardan oluşur. İlgili soğutma ortamı bu boşluktan akar ve böylece kayıp ısıyı uzaklaştırır.[10]

%99'a varan verimlilik ile turbo jeneratörler en verimli enerji dönüştürücüler arasındadır.

Elektrik enerjisi üretimi açısından önemi

2000 yılında elektrik enerjisi üretimi 55.440 PJ (15.400 TWh'ye eşdeğer) olarak gerçekleşti. Yaklaşık %64'ü fosil enerji kaynaklarından (kömür, gaz, petrol) ve diğer %17'si de nükleer enerji santrallerinden geldi. Termik santrallerin her iki alanında da turbo jeneratörler yalnızca elektrik üretimi için kullanılır.

Hidrojen soğutmalı turbo jeneratör

Hava soğutmalı turbo jeneratöre dayalı olarak, gaz halindeki hidrojen ilk olarak Ekim 1937'de Dayton, Ohio'daki Dayton Power & Light Şirketi'nde bir hidrojen soğutmalı turbo jeneratörde soğutucu olarak hizmete girdi.[11] Hidrojen, rotorda ve bazen de stator'da soğutma sıvısı olarak kullanılır ve bu da özgül kullanımda artışa ve %99,0 verimliliğe olanak tanır. Hidrojen gazının yüksek ısı iletkenliği, yüksek özgül ısısı ve düşük yoğunluğu nedeniyle, bu günümüzde kendi alanında en yaygın türdür. Hidrojen, elektroliz yoluyla yerinde üretilebilir.

Jeneratör, hidrojen gazının kaçmasını önlemek için hermetik olarak kapatılmıştır. Atmosferde oksijen bulunmaması, olası korona deşarjı nedeniyle sargıların yalıtımının hasar görmesini önemli ölçüde azaltır. Hidrojen gazı rotor muhafazası içinde dolaştırılır ve bir gaz-su ısı değiştiricisi tarafından soğutulur.[12]

Literatür

Ayrıca bakınız

Notlar

  1. ^ Bu makalenin amaçları için, turbo jeneratör terimi, dönen bir türbin şaftından gelen mekanik gücü elektrik gücüne dönüştüren elektrikli makine anlamına gelir. Ancak, turbo jeneratör tanımı hakkında kaynaklar arasında tutarsızlık vardır. Bazı çevrimiçi sözlükler şöyle bir tanım verir: "Bir turbo jeneratör, elektrik gücü üretimi için doğrudan bir elektrik jeneratörüne bağlı bir türbinin birleşimidir" [1] ve burada benzer bir tanım vardır [2]. Diğer sözlükler ve çoğu elektrik mühendisliği kaynağı, türbinin ayrı bir varlık olarak tanımlandığı, elektrik makinesiyle sınırlı bir tanım verir. Bkz.[3], [4], ve IEEE: [5] and [6]. Üretici kaynakları da tanımın sadece elektrikli makinelerle sınırlı olmasını destekler. [7] ve [8], ve "Turbo generators for thermal power plants". ANDRITZ. 31 Mayıs 2023 tarihinde kaynağından arşivlendi. 

Kaynakça

  1. ^ Ginet, C.; Joho, R.; Verrier, M. "The turbogenerator – A continuous engineering challenge" (PDF). 21 Ağustos 2010 tarihinde kaynağından (PDF) arşivlendi. 
  2. ^ "Vízenergia hasznosítás szigetközi szemmel Avagy mi lesz veled, Dunakiliti?" (PDF). 15 Ekim 2013 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 15 Ekim 2013. 
  3. ^ Smil, Vaclav (2005). Creating the Twentieth Century. Oxford University Press. ss. 63–64. ISBN 0195168747. 
  4. ^ Scientific American, 27 Nisan 1901 
  5. ^ Basic Electrical Engineering (Be 104). McGraw-Hill Education (India) Pvt Limited. 1990. s. 8.1. ISBN 978-1-259-08116-3. 11 Şubat 2018 tarihinde kaynağından arşivlendi. Erişim tarihi: 8 Ağustos 2017. 
  6. ^ https://www.ew.tu-darmstadt.de/media/ew/rd/ew_vorlesungen/lv_gghl/skript_gesamt.pdf Andreas Binder: Großgeneratoren u. Hochleistungsantriebe, TU Darmstadt 2021, Institut für Elektrische Energiewandlung, Seiten 143 und 149, abgerufen am 22. Feb. 2023
  7. ^ Turbogenerators in gas turbine systems - Part 2, ISBN 978-1-84569-728-0 (Print) 978-0-85709-606-7 (Online), Woodhead Publishing Inc., Kapitel 8.2.4
  8. ^ Basic Electrical Engineering (Be 104). McGraw-Hill Education (India) Pvt Limited. 1990. s. 8.3. ISBN 978-1-259-08116-3. 11 Şubat 2018 tarihinde kaynağından arşivlendi. Erişim tarihi: 8 Ağustos 2017. 
  9. ^ Basic Electrical Engineering (Be 104). McGraw-Hill Education (India) Pvt Limited. 1990. s. 8.4. ISBN 978-1-259-08116-3. 11 Şubat 2018 tarihinde kaynağından arşivlendi. Erişim tarihi: 8 Ağustos 2017. 
  10. ^ Eugen Wiedemann, Walter Kellenberger (1967). Konstruktion elektrischer Maschinen. Springer. ss. 69-70. ISBN 978-3-662-12180-1. 
  11. ^ National Electrical Manufacturers Association (11 Şubat 2018). "A chronological history of electrical development from 600 B.C." New York, N.Y., National Electrical Manufacturers Association – Internet Archive vasıtasıyla. 
  12. ^ "Aeroderivative & Heavy-Duty Gas Turbines - GE Power". www.gepower.com. 5 Mayıs 2010 tarihinde kaynağından arşivlendi. 

Web Bağlantıları

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Elektrik motoru</span> Elektrik enerjisini mekanik enerjiye çeviren aygıt.

Elektrik motoru, elektrik enerjisini mekanik enerjiye dönüştüren aygıttır. Her elektrik motoru biri sabit (stator) ve diğeri kendi çevresinde dönen iki ana parçadan oluşur. Bu ana parçalar, sargılar gibi elektrik akımını ileten parçalar, manyetik akıyı ileten parçalar ve vidalar ve yataklar gibi konstrüksiyon parçaları olmak üzere tekrar kısımlara ayrılır.

Dıştan yanmalı motor, yakıtın yanması ile sistemde çalışacak olan farklı bir akışkanı ısıtarak o akışkan aracılığı ile enerji dönüşümünü yapan bir motordur.

<span class="mw-page-title-main">Türbin</span>

Türbin, bir akışkanın enerjisini işe çevirmek için kullanılan alettir. Türbin bir mil ve üzerinde kanatçıklardan oluşur. Kullanılan akışkana göre türbinin yapısı değişir. Çalışma prensibi şu şekildedir. Akışkan türbinin kanatçıklarına çarparak türbin miline hareket verir, hareket milin çıkışında mekanik işe dönüşür.

<span class="mw-page-title-main">Alternatör</span> Mekanik enerjiyi alternatif akıma çeviren aygıt.

Alternatör, mekanik enerjiyi alternatif akım biçiminde elektrik enerjisine dönüştüren bir elektrik jeneratörüdür. Maliyet ve basitlik nedenleriyle, çoğu alternatör sabit armatürle dönen manyetik alan kullanır. Bazen, sabit bir manyetik alanlı doğrusal bir alternatör veya dönen bir armatür kullanılır. Prensipte, herhangi bir AC elektrik jeneratörüne alternatör denebilir, ancak genellikle terim otomotiv ve diğer içten yanmalı motorlar tarafından tahrik edilen küçük dönen makineleri ifade eder.

<span class="mw-page-title-main">Rüzgâr türbini</span> Rüzgârın kinetik enerjisini elektrik enerjisine dönüştüren sistem

Rüzgâr türbini, rüzgârdaki kinetik enerjiyi elektrik enerjisine dönüştüren sistemdir. Rüzgar türbinleri, aralıklı yenilenebilir enerjinin giderek daha önemli bir kaynağı haline gelmekte ve birçok ülkede enerji maliyetlerini düşürmek ve fosil yakıtlara bağımlılığı azaltmak için kullanılmaktadır. Bir çalışma, 2009 yılı itibarıyla rüzgarın fotovoltaik, hidro, jeotermal, kömür ve gaz enerji kaynaklarına kıyasla "en düşük göreceli sera gazı emisyonlarına, en az su tüketimi talebine ve en olumlu sosyal etkilere" sahip olduğunu öne sürmüştür.

<span class="mw-page-title-main">Nükleer enerji santrali</span> Nükleer reaktör yardımıyla elde edilen enerjiyi dağıtan merkez

Nükleer santral (NPP) veya atom santrali (APS), ısı kaynağının nükleer reaktör olduğu termik santraldir. Termik santrallerde tipik olduğu gibi, ısı, elektrik üreten jeneratöre bağlı buhar türbinini çalıştıran buhar üretmek için kullanılır. Eylül 2023 itibarıyla Uluslararası Atom Enerjisi Kurumu, dünya çapında 32 ülkede faaliyette olan 410 nükleer santral ve inşa halinde olan 57 nükleer santral olduğunu bildirdi.

<span class="mw-page-title-main">Hidroelektrik santrali</span>

Hidroelektrik santrali, barajda biriken su yer çekimi potansiyel enerjisi içermektedir. Su, belli bir yükseklikten düşerken, enerjinin dönüşümü prensibine göre Yerçekimi Potansiyel Enerjisi önce kinetik enerjiye daha sonra da türbin çarkına bağlı jeneratör motorunun dönmesi vasıtasıyla potansiyel elektrik enerjisine dönüşür. Buna da yenilenebilir enerji sınıfına giren hidroelektrik enerji santrali denir. Fizikten bilindiği gibi 1 kg'lık bir kütle, 1 m yükseklikten düştüğünde:

<span class="mw-page-title-main">Elektrik üreteci</span> Mekanik enerjiyi elektrik enerjisine dönüştüren aygıt

Elektrik üretiminde jeneratör, harekete dayalı gücü veya yakıta dayalı gücü harici bir devrede kullanılmak üzere elektrik gücüne dönüştüren bir cihazdır. Mekanik enerji kaynakları arasında buhar türbinleri, gaz türbinleri, su türbinleri, içten yanmalı motorlar, rüzgar türbinleri ve hatta el krankları bulunur. İlk elektromanyetik jeneratör olan Faraday diski, 1831 yılında İngiliz bilim adamı Michael Faraday tarafından icat edildi. Jeneratörler elektrik şebekeleri için neredeyse tüm gücü sağlar.

<span class="mw-page-title-main">Buhar türbini</span>

Buhar türbini, basınçlı buhardan termal enerjiyi çıkaran ve bunu dönen bir çıkış milinde mekanik iş yapmak için kullanan makinedir. Modern tezahürü 1884'te Charles Parsons tarafından icat edilmiştir. Modern bir buhar türbininin imalatı, 20. yüzyılda ilk kez kullanılabilir hale gelen teknolojiler kullanılarak yüksek kaliteli çelik alaşımlarını hassas parçalara dönüştürmek için gelişmiş metal işçiliğini içerir. Buhar türbinlerinin dayanıklılığı ve verimliliğindeki sürekli gelişmeler, 21. yüzyılın enerji ekonomisinin merkezinde yer almaya devam etmektedir.

<span class="mw-page-title-main">Termik santral</span> ısı enerjisinin elektrik enerjisine dönüştürüldüğü santral türü

Termik santral, ana işletici makinesi buhar gücüyle çalışan güç santralıdır. Isıtılan su buhara dönüştürülerek bir elektrik üretecini süren buhar türbinini döndürmekte kullanılır. Türbinden geçen buhar Rankine çevrimi denilen yöntemle bir yüzey yoğunlaştırıcıda yoğunlaştırılırak geri suya dönüştürülür. Termik santralların tasarımları arasındaki en büyük farklılık kullandıkları yakıt tiplerine göredir. Bu tesisler ısı enerjisini elektrik enerjisine dönüştürmekte kullanıldığından bazı kaynaklarda enerji dönüşüm santrali olarak da geçer. Bazı termik santrallar elektrik üretmenin yanı sıra endüstriyel ve ısıtma amaçlı ısı üretimi, deniz suyunun tuzdan arındırılması gibi amaçlarla da kullanılır. İnsan üretimi CO2 emisyonunun büyük kısmını oluşturan fosil yakıtlı termik santralların çıktılarını azaltma yönünde yoğun çabalar harcanmaktadır.

<span class="mw-page-title-main">Elektrik santrali</span> elektrik enerjisi üreten tesis

Elektrik santralı, elektrik üretecek bir fabrikayı meydana getiren tesislerin tümü.

<span class="mw-page-title-main">Rüzgâr gücü</span> Rüzgârdan elektrik enerjisi üretimi

Rüzgâr gücü, elektrik üretmek için rüzgâr türbinleri, mekaniksel güç için yel değirmeni, su veya kuyu pompalama için rüzgâr pompaları veya gemileri yürütmek için yelkenler kullanarak rüzgârın kullanışlı formundaki rüzgâr enerjisinin sonucudur.

<span class="mw-page-title-main">Afşin-Elbistan B Termik Santrali</span>

Afşin-Elbistan B Termik Santrali Kahramanmaraş İli, Afşin İlçesi'nin, Çoğulhan Belde'sinde Çöllolar sektöründeki 544 milyon ton düşük kalorili linyit kömür rezervlerinin kullanılması ile Türkiye'de devamlı olarak artan enerji ihtiyacına katkı sağlamak amacıyla kurulmuş bir termik santraldir. Afşin-Elbistan B Termik Santrali, 4 üniteden oluşmaktadır ve her bir ünite 360MW kurulu güce sahiptir. Santralin toplam kurulu gücü 1440MW'tır. Mitsubishi, Babcock, Gama-Tekfen-Tokar Ortaklığı, Enka Konsorsiyumu tarafından inşa edilmiştir. Müşaviri ELTEM-TEK 'dir.

<span class="mw-page-title-main">Elektrik üretimi</span>

Elektrik üretimi, elektrik ve diğer kaynaklardan birincil enerji üretme sürecidir. Elektrik üretiminin temel ilkeleri İngiliz bilim insanı Michael Faraday tarafından 1820'lerde ve 1830'ların başında keşfedildi. Onun temel yöntemi bugün hâlâ kullanılmaktadır: Elektrik, bakır gibi iletken bir telin manyetik bir alan içinde hareket ettirilmesi ile üretilir. Elektrik jeneratörü, bir mıknatıs içinde dönen sarılı iletken tellerin bulunduğu ve bu tellerin mıknatıs içinde dönmesiyle elektrik akımı üreten bir makinedir. Evlerimizde, işyerlerimizde, endüstride gereksinim duyduğumuz büyük miktardaki elektrik enerjisini elde etmek için, elektrik jeneratörlerini döndürecek büyük güç santrallarına ihtiyaç duyarız. Çoğu güç santrali, jeneratörü döndürmek için ısı üretiminde bulunurlar. Fosil yakıtlı santrallar ısı üretimi için doğal gaz, kömür ve petrol yakarlar. Nükleer santrallar da uranyum yakıtını parçalayarak ısı üretirler. Ancak bütün bu değişik tip santrallar ürettikleri ısıyı, suyu buhar haline dönüştürmek için kullanırlar. Oluşan buhar ise elektrik jeneratörüne bağlı olan türbine verilir. Su buharı, türbin şaftı üzerinde bulunan binlerce kanatçık üzerinden geçerken daha önce üretilen ısıdan almış olduğu enerjiyi kullanarak, türbin şaftını döndürür. İşte bu dönme, jeneratörün elektrik üretmek için gereksinim duyduğu mekanik harekettir. Jeneratörde oluşan elektrik ise iletim hatları denilen iletken teller ile kullanılacağı yere gönderilir. Türbinden çıkan, enerjisi diğer bir deyişle basınç ve sıcaklığı azalmış buhar ise yoğunlaştırıcı (kondenser) denilen bölümde soğutulup su haline dönüştürüldükten sonra, tekrar kullanılmak üzere santralın ısı üretilen bölümüne geri gönderilir. Yoğunlaştırıcıda soğutma işini sağlayabilmek için deniz, göl veya ırmaklarda bulunan su kullanılır. Su kaynaklarından uzak bölgelerde ise santralın hemen yanında bulunan ve uzaktan bakıldığı zaman geniş dev bacalara benzeyen soğutma kuleleri kullanılır. Bu kulelerin üzerinde görülen beyaz duman ise su buharıdır.

<span class="mw-page-title-main">Asenkron motor</span>

Endüksiyon motoru veya asenkron motor, rotordaki torku oluşturan elektrik akımının stator sargısının manyetik alanından elektromanyetik indüksiyonla elde edildiği bir AC elektrik motorudur. Bu nedenle endüksiyon motorunun rotora elektrik bağlantısına ihtiyacı yoktur. Endüksiyon motorunun rotoru, sarılı tip veya sincap kafesli tip olabilir.

<span class="mw-page-title-main">Rüzgâr türbini tasarımı</span>

Rüzgâr türbini tasarımı, rüzgârdan enerji elde etmek için rüzgâr türbininin şekil ve teknik özelliklerinin belirlenmesidir. Rüzgâr türbini kurulumu rüzgâr enerjisini almak, türbini rüzgâra yönlendirmek, mekanik dönüşü elektrik enerjisine çevirmek, türbini başlatmak, durdurmak ve kontrol etmek için gerekli sistemlerden oluşur.

<span class="mw-page-title-main">Alternatör (otomotiv)</span>

Alternatör modern otomobillerde aküyü doldurmak ve motor çalışırken elektrik sistemine elektrik vermek için kullanılan bir tür elektrik jeneratörüdür.

Anahtarlamalı relüktans motoru (AİM), relüktans torku ile çalışan bir elektrik motorudur. Yaygın fırçalı DC motor tiplerinden farklı olarak, güç rotordan ziyade stator (kasa) içerisindeki sargılara iletilir. O, gücün hareketli bir parçaya aktarması gerekmediğinden mekanik tasarımı büyük ölçüde sıradanlaştırır, ancak farklı sargılara güç sağlamak amacı ile bir tür anahtarlama sisteminin kullanılması gerektiğinden elektrik tasarımını karmaşıklaştırmaktadır. Elektronik cihazlar, AİM konfigürasyonlarını kolaylaştırarak tam olarak zaman değiştirebilir. Başlıca dezavantajı tork dalgalanmasıdır. Düşük hızlarda tork dalgalanmasını sınırlayan kontrolör teknolojisi ile gösterilmiştir. Kaynaklar bunun bir tür step motor olup olmadığı hakkında net bir sonuca varamamıştır.

Kondansatörlü motor, tek fazlı alternatif akım AC ile beslenen, asenkron motor ve endüksiyon motoru grubuna ait bir AC motorudur. Diğer asenkron motorlar gibi genellikle sincap kafesli rotor biçiminde bir rotoru vardır burada stator tarafından oluşturulan döner alan tork üretir. Dönen alan, motora adını veren ve motorun çalışması için gerekli ek bir kondensatör tarafından oluşturulur.

Motor kontrol cihazı, bir elektrik motorunun performansını önceden belirlenmiş bir şekilde koordine edebilen bir cihaz veya cihazlar grubudur. Motor kontrolörü, motoru başlatmak ve durdurmak, ileri veya geri dönüşü seçmek, hızı seçmek ve düzenlemek, torku düzenlemek veya sınırlamak ve aşırı yüklere ve elektrik arızalarına karşı korumak için elle veya otomatik kumanda eden bir araç içerebilir. Motor kontrolörleri elektromekanik anahtarlama kullanabilir veya motor hızını ve yönünü düzenlemek için güç elektroniği cihazları kullanabilir.