İçeriğe atla

Trilineer interpolasyon

Trilineer interpolasyon, 3-boyutlu bir grid üzerinde çok-değişkenli bir interpolasyon metodudur. Trilineer interpolasyon, sıklıkla, nümerik analiz, veri analizi ve bilgisayar grafiklerinde kullanılır.

Lineer ve bilineer interpolasyonlar ile kıyası

Trilineer interpolasyon, boyuttaki lineer interpolasyon ve boyuttaki bilineer interpolasyonun, boyutundaki uzantısıdır. Bu interpolasyon metotlarının doğruluk seviyesi (order of accuracy) 1'dir. Yanı sıra, bu metot, interpole edilecek noktanın çevresinden nokta değerine ihtiyaç duyar.

Birçok yöntemle, trilineer interpolasyon denklemini türetmek mümkündür. Trilineer interpolasyon, 3-boyutlu 1.seviye B-spline interpolasyon tensörüne denktir. Ayrıca, interpolasyon operatörü, 3 lineer interpolasyon operatörünün tensörel çarpımına eşittir.

Metot

İnterpolasyon noktası C'nin etrafında, küp üzeri sekiz köşe noktası
3-boyutlu interpolasyon gösterimi
Trilineer interpolasyonun geometrik gösterimi. Elde edilmek istenen nokta ile bütün hacmin çarpımı, her bir köşe noktasındaki değer ile çaprazındaki ufak hacmin çarpımlarının toplamına eşittir.

Periyodik ve kübik bir latis üzerinde, , ve 'nin, , , 'in her biri ile daha küçük bir koordinatın arasındaki fark olduğunu düşünelim:

, latis üzerinde 'den küçük bir nokta ve , 'den büyük bir noktadır. Aynı durum, ve için geçerlidir.

İlk olarak, -doğrultusunda interpolasyon yapılır (kübün ön yüzünün arka yüze doğru itildiğini düşünün). Sonucunda:

, noktasındaki fonksiyon değeridir. İkinci olarak, -doğrultusunda interpolasyon yapılır (kübün üst kenarının alt kenarına doğru itildiğini düşünün). Sonuçta:

Son olarak, denklem -doğrultusunda interpole edilir (geride kalan çizgi boyunca ilerlendiğini düşünün):

Bu ifade, interpole edilen noktadaki fonksiyon değerini vermektedir.

Trilineer interpolasyonun sonucu, üç farklı eksende yapılan üç lineer interpolasyonun işlem sırasından bağımsızdır. Örneğin, işlem sırası , , olan bir trilineer interpolasyonunun sonucu, işlem sırası , , olan interpolasyon ile aynıdır.

Yukarıdaki işlemler şu şekilde de görselleştirilebilir: İlk önce, interpole edilecek noktayı kapsayan bir kübün sekiz köşe noktasının koordinatları bulunur. Bu köşe noktaları, varsayılsın ki, şu değerlere sahiptir: C000, C100, C010, C110, C001, C101, C011, C111.

Akabinde, C00'ı bulmak için C000 ve C100 ile lineer interpolasyon yapılır. Lineer interpolasyon, aynı şekilde, C01 için C001 ve C101 arasında; C11 için C011 ve C111 arasında; ve C10 için C010 ve C110 arasında uygulanır.

Ardından, C0 için C00 ve C10 arası; ve C1 için C01 ve C11 arası lineer interpolasyon uygulanır.

Son adımda, C değeri, C0 ve C1 arasında lineer interpolasyonla elde edilir.

Tüm bunlara ek olarak, trilineer interpolasyon, iki bilineer interpolasyon ve bir lineer interpolasyonun kombinasyonu ile de ulaşılabilir:

Ayrıca bakınız

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

<span class="mw-page-title-main">Doğru (geometri)</span>

Doğru, matematikte mantıksal bir değerdir. Matematik'te ne olduğu belli olmayan (tanımsız) değerlerden biridir. Ayrıca geometride doğru ifadesi aynı doğrultuda olan ve her iki yönden de sonsuza kadar giden noktalar kümesi diye de tanımlanır. Bir doğru üzerinde en az 2 nokta, dışında da en az 1 nokta mevcuttur.

<span class="mw-page-title-main">Açısal momentum</span> Fiziksel nicelik

Açısal momentum, herhangi bir cismin dönüş hareketine devam etme isteğinin bir göstergesidir ve bu nicelik cismin kütlesine, şekline ve hızına bağlıdır. Açısal momentum bir vektör birimidir ve cismin belirli eksenler üzerinde sahip olduğu dönüş eylemsizliği ile dönüş hızını ifade eder.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. a ve b sayıları gerçek olursa karmaşık sayılar şu biçimde gösterilirler:

Lie işlemcisi, matematikte ve fizikte geniş bir kullanım alanı bulur. Bir cismin üzerine bu dönüşüm ile tanımlanan yöney (vektör) uzayı Lie cebri olarak adlandırılır. Adını Sophus Lie'den almıştır.

Fizikte ve matematikte, matematikçi Hermann Minkowski anısına adlandırılan Minkowski uzayı veya Minkowski uzayzamanı, Einstein'ın özel görelilik kuramının en uygun biçimde gösterimlendiği matematiksel yapıdır. Bu yapıda, bilinen üç uzay boyutu tek bir zaman boyutuyla birleştirilerek, uzay zamanını betimlemek için dört boyutlu bir çokkatlı oluşturulmuştur.

<span class="mw-page-title-main">Doğrusal denklem</span>

Doğrusal ya da lineer denklem terimlerinin her biri ya birinci dereceden değişken ya da bir sabit olan denklemlerdir. Böyle denklemlere "doğrusal" denmesinin nedeni içerdikleri terim ve değişkenlerin sayısına bağlı olarak (n) düzlemde ya da uzayda bir doğru belirtmesindendir. Doğrusal denklemlerin en yaygını bir ve değişkeni içeren aşağıdaki formdur:

En küçük kareler yöntemi, birbirine bağlı olarak değişen iki fiziksel büyüklük arasındaki matematiksel bağlantıyı, mümkün olduğunca gerçeğe uygun bir denklem olarak yazmak için kullanılan, standart bir regresyon yöntemidir. Bir başka deyişle bu yöntem, ölçüm sonucu elde edilmiş veri noktalarına "mümkün olduğu kadar yakın" geçecek bir fonksiyon eğrisi bulmaya yarar. Gauss-Markov Teoremi'ne göre en küçük kareler yöntemi, regresyon için optimal yöntemdir.

Vektör uzayı veya Yöney uzayı, matematikte ölçeklenebilir ve eklenebilir bir nesnelerin (vektörlerin) uzayına verilen isimdir. Daha resmî bir tanımla, bir vektör uzayı, iki elemanı arasında vektör toplamasının ve skaler denilen sayılarla çarpımın tanımlı olduğu ve bunların bazı aksiyomları sağladığı kümedir. Skalerler, rasyonal veya reel sayılar kümesinden gelebilir, ama herhangi bir cisim üzerinden bir vektör uzayı oluşturmak mümkündür. Vektör uzayları, skalerlerin geldiği cisime göre reel vektör uzayı, kompleks vektör uzayı veya genel bir cisim üzerinden K vektör uzayı şeklinde adlandırılır.

Matematikte aşağıda gösterilen özellikleri sağlayan cebir yapısına "alan" denir. Alan sonlu sayıda elemanlardan (noktalardan) oluşursa "Galois" alanı denir. Fizik kuramlarında kullanılan alanlar genellikle sonsuz sayıda nokta içerir. Alan'daki her nokta reel sayı, karmaşık sayı, vektör, tensör, spinor ya da fonksiyon olabilir.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

<span class="mw-page-title-main">Cauchy integral teoremi</span> Matematiksel analiz ile ilgili bir teorem

Matematiğin bir dalı olan karmaşık analizde, Augustin Louis Cauchy'nin ismine atfedilen Cauchy integral teoremi, karmaşık düzlemdeki holomorf fonksiyonların çizgi integralleri hakkında önemli bir teoremdir.

<span class="mw-page-title-main">Cebirsel topoloji</span>

Cebirsel topoloji, topolojik uzayları cebirsel gereç ve yöntemlerle inceleyen matematik dalı. Matematikte bir kümenin üzerine döşenecek yapı, yönelinen matematik dalını belirler. Bir kümeye bir ya da birkaç işlem konarak sayılar kuramı ya da cebir yapmaya başlanabilir. Kümenin üzerine bir topoloji koyaraksa topoloji ve, ayrıca uzunluk koyarsak, geometri yapmaya başlanır. Üzerine topoloji konmuş bir uzayı incelemek için kimi cebirsel, aritmetik veya topolojik değişmezler tanımlanır; bunlar aracılığıyla topolojik uzayın özellikleri ayırdedilir. Örneğin tıkızlık, bağlantılılık, sayılabilirlik bu tür değişmezlerdir. Topolojik eşyapısal iki uzaydan biri bu değişmeze sahipse diğeri de buna sahip olmalıdır. Yani, eğer iki uzay için ayrı ayrı bakılan bir değişmez aynı değilse, bu iki uzay eşyapısal olmayacaktır. Yukarıda anılan en eski değişmezlerin hemen ardından inşa edilen klasik değişmezler cebirsel olanlardır.

<span class="mw-page-title-main">Çevrel çember</span>

Çevrel çember, geometride, bir çokgenin tüm köşelerinden geçen çember. Bu çemberin merkezi çevrel özek olarak isimlendirilir.

<span class="mw-page-title-main">İletim hattı</span>

İletim hattı, elektronik ve haberleşme mühendisliğinde, akımın dalga karakteristiğinin hesaba katılmasını gerektirecek kadar yüksek frekanslarda, radyo frekansı, alternatif akımın iletimi için tasarlanmış özel kablo. İletim hatları radyo vericisi, alıcısı ve bunların anten bağlantıları, kablolu televizyon yayınlarının dağıtımı ve bilgisayar ağları gibi yerlerde kullanılır.

Fizikte, Lorentz dönüşümü adını Hollandalı fizikçi Hendrik Lorentz'den almıştır. Lorentz ve diğerlerinin referans çerçevesinden bağımsız ışık hızının nasıl gözlemleneceğini açıklama ve elektromanyetizma yasalarının simetrisini anlama girişimlerinin sonucudur. Lorentz dönüşümü, özel görelilik ile uyum içerisindedir. Ancak özel görelilikten daha önce ortaya atılmıştır.

Birim küre, belirli merkez noktasından 1 birim uzaklıkta olan noktalar kümesidir.Mesafelerin genellenmiş kavramları olarak da kullanılabilir.Kapalı bir birim küre, merkezden 1 birim az veya 1 birime eşit uzaklıktaki noktalar kümesidir.Genellikle, boşluktaki orijinden bir nokta ayırt edilmişitir ve bu noktanın birim kürenin veya birim topun merkezi olduğu anlaşılır.Bu yüzden birim küre ya da birim topun aynı olduğu söylenir. Örneğin;bir boyutlu küre, genellikle bir halka olarak adlandırılan bir yüzeydir ve çember bir içi yüzeye ve dış yüzeye sahipse iki boyutlu bir küredir.Benzer bir şekilde, halk dilinde küre olarak bilinen Öklid katısının yüzeyi iki boyutlu küredir ve ayrıca içi ve dış yüzeye sahip olduğunda üç boyutlu küre olur. Bir birim küre basitçe bir küre yarıçapına sahiptir.Birim kürenin önemi, herhangi bir kürenin ölçeklendirme ve çevirme kombinasyonlarına dönüşebilmesinden anlayabiliriz.Bu yolla, çalışırken kürenin temel özelliklerini daha aza indirgeyebiliriz.

<span class="mw-page-title-main">Bilineer interpolasyon</span>

Bilineer interpolasyon, lineer interpolasyonun iki değişkenli fonksiyonların rectilineer iki-boyutlu grid üzerinde interpolasyonu için olan uzantısıdır.

<span class="mw-page-title-main">Lineer interpolasyon</span> eğri uydurma metodu

Lineer interpolasyon, lineer polinomlar kullanarak, verilerin bilindiği noktalardan yeni verilerin üretilmesini sağlayan bir eğri uydurma metodudur.