Trigonometrik fonksiyonlar
Trigonometrik fonksiyonlar, matematikte bir açının işlevi olarak geçen fonksiyonlardır. Geometride üçgenleri incelerken ve periyodik olarak tekrarlanan olayları incelerken sıklıkla kullanılırlar. Genel olarak bir açısı belirli dik üçgenlerde herhangi iki kenarın oranı olarak belirtilirler, ancak birim çemberdeki belirli doğru parçalarının uzunlukları olarak da tanımlanabilirler. Daha çağdaş tanımlarda sonsuz seriler veya belirli bir türevsel denklemin çözümü olarak geçerler.
Temel fonksiyonlar
Çağdaş kullanımda, aşağıdaki tabloda da gösterildiği üzere altı tane temel trigonometrik fonksiyon vardır. Özellikle son dördünde, bu bağıntılar bu fonksiyonların tanımları olarak geçer, ama bu fonksiyonlar geometrik veya başka yollardan da tanımlanabilirler ve bu bağıntılar o yollardan da çıkarılabilir. Bu fonksiyonlar arasındaki birçok bağıntı trigonometrik ifadeler sayfasında görülebilir.
Fonksiyon | Kısaltma | İlişki |
Sinüs | sin | |
Kosinüs | cos | |
Tanjant | tan | |
Kotanjant | cot | |
Sekant | sec | |
Kosekant | csc (veya cosec) |
Sinüs ve Kosinüs fonksiyonları
1. f(x) = sin(x) işlevi dik üçgen'de karşı dik kenarın hipotenüse oranıdır. Koordinat Düzleminde "y" ekseni olarak tabir edilir. Bu işlevin tanım aralığı [-1,1] dir. Yani, sinüs fonksiyonunun değeri -1'den küçük 1'den büyük olamaz.
2. f(x) = cos(x) işlevi dik üçgende Komşu dik kenarın hipotenüse oranıdır. Koordinat düzleminde "x" ekseni olarak tabir edilir. Tanım aralığı f(x) = sinx işleviyle aynıdır.
Sinüs ve Kosinüs işlevleri arasında Pisagor teoreminden çıkarılabilen; bağıntısı vardır.
Tanjant ve Kotanjant işlevleri
3. f(x) = tanx işlevi dik üçgende Karşı dik kenarın komşu dik kenara oranıdır. Koordinat düzleminde Birim çembere "x" ekseninin pozitif tarafında teğet ve x eksenine diktir. Tanım aralığı (-∞,+∞) dır. Ayrıca 'dir.
4. f(x) = cotx işlevi dik üçgende Komşu dik kenarın karşı dik kenara oranıdır. Koordinat düzleminde Birim çembere "y" ekseninin pozitif yönünde teğet ve y eksenine diktir. Tanım aralığı (-∞,+∞) dır.
Tanjant ve Kotanjant işlevleri arasında birim çemberde benzerlik yapılarak veya Pisagor teoreminden bulunabilen bağıntısı vardır.
Trigonometrik fonksiyonların özel değerleri
Aşağıdaki tabloda gösterildiği gibi Trigonometrik fonksiyonların bazı yaygın olarak kullanılan özel değerleri vardır,
Fonksiyon | |||||||
---|---|---|---|---|---|---|---|
sin | |||||||
cos | |||||||
tan | Tanımsız[1] | ||||||
cot | Tanımsız[1] | ||||||
sec | Tanımsız[1] | ||||||
csc | Tanımsız[1] |
Diğer trigonometrik fonksiyonlar
Yukarıda ifade edilenlerle birlikte, daha önce hiç duymamış olabileceğiniz ek trigonometrik fonksiyon aileleri vardır. Bunlar şunları içerir: Versine, Vercosine, Coversine, Covercosine, Exsecant, Excosecant, Haversine, Havercosine, Hacoversine, Hacovercosine.
Bunlar, temel üç trigonometrik fonksiyonun temel kombinasyonları için basit isimler olup özdeşlikleri aşağıdaki tabloda verilmiştir:
Fonksiyon | Kısaltma | Özdeşlik |
Versinüs | versin(θ) | 1 – cos(θ) |
Verkosinüs | vercosin(θ) | 1 + cos(θ) |
Koversinüs | coversin(θ) | 1 – sin(θ) |
Koverkosinüs | covercosin(θ) | 1 + sin(θ) |
Ekssekant | exsec(θ) | sec(θ) – 1 |
Ekskosekant | excsc(θ) | csc(θ) – 1 |
Haversinüs | haversin(θ) | versin(θ)/2 |
Haverkosinüs | havercosin(θ) | vercosin(θ)/2 |
Hakoversinüs | hacoversin(θ) | coversin(θ)/2 |
Hakoverkosinüs | hacovercosin(θ) | covercosin(θ)/2 |
Birim çemberde tanımlar
Bu altı trigonometrik fonksiyon birim çember'de tanımlanabilir, yarıçapı bir birim olan çemberdir. Birim çember tanımı pratik hesaplamada çok yararlar sağlar; aslında çoğu açıları için dik üçgeni kullanabiliriz. Açılar 0 ve π/2 radyan'la sınırlı değildir. Birim çember bütün pozitif ve negatif açıların trigonometrik değerlerini tanımlar
Ayrıca tek bir görsel resim Aynı anda tüm önemli üçgenlerin içinde saklanmasını sağlar. Pisagor teoremi'nden yararlanılarak birim çemberde şu denklemi kurabiliriz:
Bu resim bazı yaygın açıları, negatif ve pozitif yöndeki ölçüleri, radyan ölçülerini içerir, x-ekseninin pozitif yarısının orijinden çizilen doğru ile yaptığı açı θ’dır, bu birim çemberle kesişir. x- ve y-koordinatlarının bu kesim noktası ile kesiştiği nokta sırasıyla cos θ ve sin θ, değerlerine eşittir. Hipotenüs burada 1'e eşittir. böylece sin θ = y/1 ve cos θ = x/1 olacaktır
Bu değerlerin, kolay biçimde hafızaya alındığını aklınızda bulundurunuz
15°, 18º, 36º, 54°, 72º ve 75° için elde edilen değerleri aşağıdadır.
3º, 6º, 9º, 81º, 84º ve 87º için değerleri analitik olarak hesaplanabilir.
2π ve daha büyük açılar için az-2π ve daha küçük açılar için çember etrafında sadece bir daire etrafında dönmeye devam ederler
- sin ve cos periyodik fonksiyon ve periodu 2π'dir
herhangi bir açı θ ve herhangi bir tam sayı k 'dır.
Seri tanımları
Trigonometrik fonksiyonların Taylor serisi'ne açılımları aşağıdaki gibidir. bütün x:[2] gerçek sayılar için
Bu iki serinin şu toplamı Euler formülü'nü verir: cos x + i sin x = eix. Diğer serilerde bulunabilir.[3] Aşağıdaki trigonometrik fonksiyonlar için:
- Un ninci üst/alt sayı'dır,
- Bn ninci Bernoulli sayısı'dır, ve
- En (aşağıda) ninci Euler sayısı'dır.
Tanjant
Eğer seri tanjant fonksiyonu ilgili faktöriyelleri ile ifade edilecekse, kombinatorik yorumlamada, kardinal tek sayıların sonlu sayıda permütasyon alternatifleri vardır bunlar "tanjant sayıları" olarak adlandırılır.[4]
Kosekant
Secant
Eğer seri sekant fonksiyonu ilgili faktöriyelleri ile ifade edilecekse, kombinatorik yorumlamada, kardinal tek sayıların sonlu sayıda permütasyon alternatifleri vardır bunlar "sekant sayıları" olarak adlandırılır.[4]
Kotanjant
kotanjant fonksiyonu ve ters fonksiyonlar için:[5]
Bu eşitlik Herglotz hilesi ile ispat edilir.[6]-inci ve -inci terimleri birleştirilerek mutlak yakınsak seri:
Üstel fonksiyonlar ve karmaşık sayılarla ilişkisi
Bu eşitlik Euler formülüdür. Karmaşık analizin geometrik yorumlanmasının esasını oluşturur. Örnek olarak Karmaşık düzlem'de birim çemberin e ix, parametrizasyonu gibi. Buradaki paramatreler cos ve sin'dir. Euler formülü ile aşağıdaki sin ve cos trigonometrik eşitlikler yazılabilir:
Dahası, trigonometrik fonksiyonların bu karmaşık argümanları için z tanımını sağlar:
burada i 2 = −1. sin ve cos tam fonksiyon'dur. Ayrıca, x saf gerçeldir,
Ayrıca argümanları gerçek ve sanal kısımları bakımından karmaşık sinüs ve kosinüs fonksiyonları ifade etmek bazen yararlıdır.
Bu (sin, cos) fonksiyonlarından yararlanılarak hiperbolik gerçek (sinh, cosh) karşılıkları bulunabilir.
Karmaşık grafik
Aralık değerinin parlaklığın büyüklüğü (mutlak değeri) gösterir. Parlaklığı siyah olan değer sıfırdır. Renk tonu pozitif reel eksenle ölçülen, argüman veya açı ile değişir.
Ayrıca bakınız
- Trigonometrinin ana hatları
- Trigonometrik tabloların oluşturulması
- Aryabhata sinüs tablosu
- Madhava sinüs tablosu
- Madhava serisi
- Bhaskara sinüs yaklaşıklığı formülü
- Hiperbolik fonksiyon
- Birim vektör (cos yön açıklaması)
- Newton serisi tablosu
- Trigonometrik eşitliklerin listesi
- Trigonometrik eşitliklerin kanıtları
- Euler formülü
- Polar sinüs-köşe açıları bir genellemesi
- Gauss sürekli kesri-tanjant fonksiyonu tanımı için bir sürekli kesir
- Genelleştirilmiş trigonometri
Notlar
- ^ a b c d Abramowitz, Milton and Irene A. Stegun, p.74
- ^ See Ahlfors, pages 43–44.
- ^ Abramowitz; Weisstein.
- ^ a b Stanley, Enumerative Combinatorics, Vol I., page 149
- ^ Aigner, Martin; Ziegler, Günter M. (2000). Proofs from THE BOOK. Second. Springer-Verlag. s. 149. ISBN 978-3-642-00855-9. 20 Şubat 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 27 Haziran 2012.
- ^ Remmert, Reinhold (1991). Theory of complex functions. Springer. s. 327. ISBN 0-387-97195-5. 18 Ocak 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 27 Haziran 2012., Extract of page 327 7 Haziran 2013 tarihinde Wayback Machine sitesinde arşivlendi.
Kaynakça
- Abramowitz, Milton and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York. (1964). ISBN 0-486-61272-4.
- Lars Ahlfors, Complex Analysis: an introduction to the theory of analytic functions of one complex variable, second edition, McGraw-Hill Book Company, New York, 1966.
- Boyer, Carl B., A History of Mathematics, John Wiley & Sons, Inc., 2nd edition. (1991). ISBN 0-471-54397-7.
- Gal, Shmuel and Bachelis, Boris. An accurate elementary mathematical library for the IEEE floating point standard, ACM Transaction on Mathematical Software (1991).
- Joseph, George G., The Crest of the Peacock: Non-European Roots of Mathematics, 2nd ed. Penguin Books, London. (2000). ISBN 0-691-00659-8.
- Kantabutra, Vitit, "On hardware for computing exponential and trigonometric functions," IEEE Trans. Computers 45 (3), 328–339 (1996).
- Maor, Eli, Trigonometric Delights, Princeton Univ. Press. (1998). Reprint edition (February 25, 2002): ISBN 0-691-09541-8.
- Needham, Tristan, "Preface"" to Visual Complex Analysis2 Haziran 2004 tarihinde Wayback Machine sitesinde arşivlendi.. Oxford University Press, (1999). ISBN 0-19-853446-9.
- O'Connor, J.J., and E.F. Robertson, "Trigonometric functions", MacTutor History of Mathematics archive. (1996).
- O'Connor, J.J., and E.F. Robertson, "Madhava of Sangamagramma"26 Şubat 2006 tarihinde Wayback Machine sitesinde arşivlendi., MacTutor History of Mathematics archive. (2000).
- Pearce, Ian G., "Madhava of Sangamagramma"5 Mayıs 2006 tarihinde Wayback Machine sitesinde arşivlendi., MacTutor History of Mathematics archive. (2002).
- Weisstein, Eric W., "Tangent"19 Temmuz 2006 tarihinde Wayback Machine sitesinde arşivlendi. from MathWorld, accessed 21 January 2006.
Dış bağlantılar
- Visionlearning Module on Wave Mathematics18 Mart 2008 tarihinde Wayback Machine sitesinde arşivlendi.
- GonioLab: Visualization of the unit circle, trigonometric and hyperbolic functions
- Dave's draggable diagram.15 Haziran 2008 tarihinde Wayback Machine sitesinde arşivlendi. (Requires java browser plugin)