İçeriğe atla

Translasyon

Translasyon, transkripsiyon sonucu oluşan mRNA'lardaki koda uygun olarak ribozomlarda gerçekleştirilen amino asit zinciri veya polipeptit sentezi sürecidir, daha sonra üretilen amino asit zinciri veya polipeptit uygun bir şekilde katlanarak etkin bir protein haline gelmektedir. Translasyon, (gen ekspresyonu sürecinin bir parçası olan) protein biyosentezinin ilk aşamasıdır. 4 harfli (A, C, G ve T) DNA dilindeki mesajın 20 harfli amino asid diline çevrilmesinden ötürü, İngilizce terminolojide "çeviri" anlamına gelen translation sözcüğü kullanılmaktadır. Bu terim Türkçeye translasyon olarak geçmiştir. Translasyon hücrenin sitoplazmasında gerçekleşir. Sitoplazmada bulunan iki ribozom alt birimi translasyon sırasında mRNA zincirinin 5' ucuna bağlanır. Ribozom üzerindeki bağlanma bölgelerinde, mRNA'daki baz üçlülerini (kodon) tRNA'daki tamamlayıcıları olan antikodonlara bağlar. mRNA'daki kodonlara karşılık gelen antikodonu bulunduran tRNA'ların art arda eklenmesi sırasında tRNA'nın 3' ucuna bağlanmış olan amino asitler birbirine bağlanarak polipeptit zincirini oluşturur.

Endoplazmik retikulum içerisine salgılan bir proteinin translasyonunu yapan bir ribozom. Ribozom birimleri sarı ve yeşil, tRNA'lar koyu mavi ve diğer proteinler de açık mavi renktedir.

Çoğu durumda, ribozom/mRNA kompleksi granülsüz endoplazmik retikulumun zarına bağlanır ve üretilen polipeptidi, daha sonra veziküller ile taşınması ve hücre dışına salgılanması için endoplazmik retikulum içine bırakır. Taşıyıcı RNA, ribozomal RNA ve küçük çekirdek RNA'sı gibi transkribe edilmiş birçok RNA türünün proteine translasyonu yapılmaz.

Translasyon dört aşamada gerçekleşir: etkinleşme, başlama, uzama (elongasyon) ve sonlanmadır (terminasyon) (bunların hepsi translasyonun ürünü olan amino asit zinciri veya polipeptidin büyümesi ile ilgilidir).

Etkinleşme sırasında, doğru amino asit doğru taşıyıcı RNA'ya kovalent olarak bağlanır. Amino asit karboksil grubundan, bir peptit bağı aracılığıyla tRNA'nin 3' OH ucuna bağlanır. tRNA'ya bağlanmış amino asit varsa, bu tRNA'lar "yüklü" olarak adlandırılır. Başlama, başlama faktörlerinin (IF) yardımıyla ribozom alt birimlerinin mRNA'nın 5' ucuna bağlanmasıyla olur.

Polipeptidin sonlanması ribozomun A bölgesine bir bitiş kodonunun (UAA, UAG veya UGA) ilişmesiyle olur. Hiçbir tRNA bu kodonu algılayamaz ve bu kodona bağlanamaz. Bitiş kodonu, ribozom/mRNA kompleksini ayırma isteğini bildiren serbest bırakıcı proteinin bağlanmasını sağlar.

Birçok antibiyotik translasyonu engelleme suretiyle çalışır; bu antibiyotikler anisomisin, sikloheksimit, klorafenikol, tetrasiklin, streptomisin, eritromisin ve puromisin içerir. Prokaryotik ribozomların yapısı ökaryotik olanlardan farklıdır, bu sayede antibiyotikler özel olarak bakteri enfesiyonlarını hedef alıp, ökaryot konak hücrelerine bir zarar vermeden çalışabilirler.

Temel mekanizmalar

Ribozomların mRNA translasyonu ve protein üretimini nasıl gerçekleştirdiğini gösteren diyagram.

mRNA, DNA'dan aldığı genetik bilgiyi ribonükleotid diziliminde kodlanmış olarak ribozomlara taşır. Ribonükleotitler, kodon olarak adlandırılan nükleotid üçlüleri dizisi olarak "okunur". Her üçlü, belirli bir amino asidin kodlanmasını sağlar.

Bu kod ribozomlarda belirli bir amino asit dizilimine çevrilir. Ribozom, rRNA ve proteinlerden oluşmuş birden fazla alt birimi bulunan bir yapıdır. Ribozomlar amino asitlerin birleştirilerek proteinlerin yapıldığı bir "fabrika"dır. tRNA'lar amino asitleri ribozomlara taşıyan, küçük, kodlanmayan RNA zincirleridir (74-93 nükleotitten oluşurlar). tRNA'lar amino asitlerin bağlanması için bir bölgeye ve bir de antikodon içeren bir bölgeye sahiptir. Antikodonlar, taşıdıkları amino asitleri kodlayan mRNA üçlülerinin (yani kodonların) tamamlayıcıları olan RNA üçlüleridir.

Aminoasil tRNA sentetaz (bir enzim), belirli tRNAlar ve antikodonlarının çağırdığı amino asitler arasındaki bağı katalizler. Bu tepkimenin ürünü bir adet aminoasil-tRNA molekülüdür. Aminoasil-tRNA, mRNA kodonlarının tamamlayıcı tRNA antikodonları ile eşleştirildiği ribozom içinde yolculuk eder. Daha sonra tRNA'ların taşıdığı amino asitler protein oluşturmada kullanılır. Proteinlerin translasyonu için gerekli olan enerji fazladır. Örneğin n adet amino asit içeren bir proteinin translasyonu için gereken yüksek enejili Fosfat bağlarının sayısı 4n+1'dir []. Translasyonun hızı değişmektedir; prokaryotik hücrelerde (saniyede 17-21 amino asit kalıntısına kadar), ökaryotik hücrelere göre (saniyede 6-9 amino asit kalıntısına kadar) belirgin bir şekilde yüksektir.[1]

Genetik kod

Proteinlerin, üçüncül yapıları olarak adlandırılan 3B yapıları gibi diğer yönleri sadece gelişmiş algoritmalar ile tahmin edilebilirken, birincil yapı olarak adlandırılan amino asit dizilimi yalnızca translasyon tablosunun yardımıyla nükleik asit dizilimine bakılarak tespit edilebilir.

This approach may not give the correct amino acid composition of the protein, in particular if unconventional amino acids such as selenocysteine are incorporated into the protein, which is coded for by a conventional stop codon in combination with a downstream hairpin (SElenoCysteine Insertion Sequence, or SECIS).

There are many computer programs capable of translating a DNA/RNA sequence into a protein sequence. Normally this is performed using the Standard Genetic Code; many bioinformaticians have written at least one such program at some point in their education. However, few programs can handle all the "special" cases, such as the use of the alternative initiation codons. For example, the rare alternative start codon CTG codes for Methionine when used as a start codon, and for Leucine in all other positions.

Example: Condensed translation table for the Standard Genetic Code (from the NCBI Taxonomy webpage11 Aralık 2015 tarihinde Wayback Machine sitesinde arşivlendi.).

   AAs  = FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG
 Starts = ---M---------------M---------------M----------------------------
 Base1  = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG
 Base2  = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG
 Base3  = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG

Translation tables

Even when working with ordinary Eukaryotic sequences such as the Yeast genome, it is often desired to be able to use alternative translation tables—namely for translation of the mitochondrial genes. Currently the following translation tables are defined by the NCBI Taxonomy Group6 Şubat 2006 tarihinde Wayback Machine sitesinde arşivlendi. for the translation of the sequences in GenBank:

 1: The Standard
 2: The Vertebrate Mitochondrial Code
 3: The Yeast Mitochondrial Code
 4: The Mold, Protozoan, and Coelenterate Mitochondrial Code and the
Mycoplasma/Spiroplasma Code 5: The Invertebrate Mitochondrial Code 6: The Ciliate, Dasycladacean and Hexamita Nuclear Code 9: The Echinoderm and Flatworm Mitochondrial Code 10: The Euplotid Nuclear Code 11: The Bacterial and Plant Plastid Code 12: The Alternative Yeast Nuclear Code 13: The Ascidian Mitochondrial Code 14: The Alternative Flatworm Mitochondrial Code 15: Blepharisma Nuclear Code 16: Chlorophycean Mitochondrial Code 21: Trematode Mitochondrial Code 22: Scenedesmus obliquus mitochondrial Code 23: Thraustochytrium Mitochondrial Code

Software examples

Example of computational translation - notice the indication of (alternative) start-codons:

VIRTUAL RIBOSOME
----
Translation table: Standard SGC0

>Seq1
Reading frame: 1

    M  V  L  S  A  A  D  K  G  N  V  K  A  A  W  G  K  V  G  G  H  A  A  E  Y  G  A  E  A  L
5' ATGGTGCTGTCTGCCGCCGACAAGGGCAATGTCAAGGCCGCCTGGGGCAAGGTTGGCGGCCACGCTGCAGAGTATGGCGCAGAGGCCCTG 90
   >>>...)))..............................................................................)))

    E  R  M  F  L  S  F  P  T  T  K  T  Y  F  P  H  F  D  L  S  H  G  S  A  Q  V  K  G  H  G
5' GAGAGGATGTTCCTGAGCTTCCCCACCACCAAGACCTACTTCCCCCACTTCGACCTGAGCCACGGCTCCGCGCAGGTCAAGGGCCACGGC 180
   ......>>>...))).......................................))).................................

    A  K  V  A  A  A  L  T  K  A  V  E  H  L  D  D  L  P  G  A  L  S  E  L  S  D  L  H  A  H
5' GCGAAGGTGGCCGCCGCGCTGACCAAAGCGGTGGAACACCTGGACGACCTGCCCGGTGCCCTGTCTGAACTGAGTGACCTGCACGCTCAC 270
   ..................)))..................)))......))).........)))......)))......))).........

    K  L  R  V  D  P  V  N  F  K  L  L  S  H  S  L  L  V  T  L  A  S  H  L  P  S  D  F  T  P
5' AAGCTGCGTGTGGACCCGGTCAACTTCAAGCTTCTGAGCCACTCCCTGCTGGTGACCCTGGCCTCCCACCTCCCCAGTGATTTCACCCCC 360
   ...)))...........................))).........))))))......)))..............................

    A  V  H  A  S  L  D  K  F  L  A  N  V  S  T  V  L  T  S  K  Y  R  *
5' GCGGTCCACGCCTCCCTGGACAAGTTCTTGGCCAACGTGAGCACCGTGCTGACCTCCAAATACCGTTAA 429
   ...............))).........)))..................)))...............***

Annotation key:
>>> : START codon (strict)
))) : START codon (alternative)
*** : STOP
  • Prokaryot ve ökaryot hücrelerde transkipsiyon ve translasyonda farklılıklar görülür.
  • Prokaryotlarda çekirdek olmadığından transkripsiyon ve translasyon birbiriyle bağlantılıdır. Transkripsiyon devam ederken mRNA nın öndeki ucu ribozoma bağlanır.
  • Ökaryotlarda çekirdek zarı vardır ve bu yüzden transkripsiyon ve translasyon birbirinden ayrılır.
  • Transkripsiyon çekirdekte gerçekleşir ve mRNA translasyonu olduğu sitoplazmaya aktarılmadan önce pre-mRNA meydana getirilir. Daha sonra RNA işlenmesiyle son mRNA sentezlenir. Başlangıçtaki RNA kopyası için PRİMER TRANSKRİPT kullanılır.
  • Her bir gen için iki DNA zincirinden sadece biri kopyalanır. Bu kalıp zincir olarak isimlendirilir.
  • DNA daki şifre "kod", bu mRNA ya geçince "kodon", tRNA ya geçince antikodon adını alır. (üçlü şifreler halinde: ATG, SGT, USG gibi...)
  • Translasyon sırasında mRNA molekülü boyunca yer alan kodon dizisi, bir polipeptit zincirini yapan aminoasit dizisine tercüme eder.
  • Kodonlar mRNA boyunca 5' → 3' yönünde okur.

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Protein</span> polipeptitlerin işlevsellik kazanması sonucu oluşan canlıların temel yapı birimi

Proteinler, bir veya daha fazla uzun amino asit artık zincirini içeren büyük biyomoleküller ve makromolekül'lerdir. Proteinler organizmalar içinde, hücrelere yapı ve organizmalar sağlayarak ve molekülleri bir konumdan diğerine taşıyarak metabolik reaksiyonları katalizleme, DNA kopyalama, uyaranlara yanıt verme dahil olmak üzere çok çeşitli işlevler gerçekleştirir. Proteinler, genlerinin nükleotit dizisi tarafından dikte edilen ve genellikle faaliyetini belirleyen özel 3D yapıya protein katlanmasıyla sonuçlanan amino asit dizilimlerinde birbirlerinden farklıdır.

<span class="mw-page-title-main">RNA</span> nükleotitlerden oluşan polimer

Ribonükleik asid (RNA), bir nükleik asittir, nükleotitlerden oluşan bir polimerdir. Her nükleotit bir azotlu baz, bir riboz şeker ve bir fosfattan oluşur. RNA pek çok önemli biyolojik rol oynar, DNA'da taşınan genetik bilginin proteine çevirisi (translasyon) ile ilişkili çeşitli süreçlerde de yer alır. RNA tiplerinden olan mesajcı RNA, DNA'daki bilgiyi protein sentez yeri olan ribozomlara taşır, ribozomal RNA ribozomun en önemli kısımlarını oluşturur, taşıyıcı RNA ise protein sentezinde kullanılmak üzere kullanılacak aminoasitlerin taşınmasında gereklidir. Ayrıca çeşitli RNA tipleri genlerin ne derece aktif olduğunu düzenlemeye yarar.

<span class="mw-page-title-main">Ribozom</span> Tüm canlı hücrelerde bulunan zarsız organel.

Ribozom, tüm canlı hücrelerde bulunan karmaşık moleküler yapıya sahip ve protein oluşturma sürecinde hayati bir rol oynayan bir organeldir. Bu süreç, mRNA çevirisi olarak bilinen bir biyolojik mekanizma aracılığıyla gerçekleşir. Kısaca ribozomlar, haberci RNA (mRNA) molekülleri tarafından sağlanan talimatları takip ederek amino asitleri birbirine bağlar ve polipeptit adı verilen amino asit zincirlerini oluşturur.

<span class="mw-page-title-main">Mesajcı RNA</span> Bir protein üretmek için ribozom tarafından okunan RNA

Mesajcı RNA (mRNA), sentezlenecek bir proteinin amino asit dizisine karşılık gelen kimyasal şifreyi taşıyan bir moleküldür. mRNA, bir DNA kalıptan transkripsiyon yoluyla sentezlenir ve protein sentez yeri olan ribozomlara, protein kodlayıcı bilgiyi taşır. Burada, çevirim (translasyon) süreci sonucu, RNA polimerindeki bilgi ile bir amino asit polimeri üretilir. Nükleik asitlerin amino asit dizilerine karşılık gelen bölgelerindeki her üç baz, proteindeki bir amino asite karşılık gelir. Bu üçlülere kodon denir, her biri bir amino asit kodlar, bitiş kodonu ise protein sentezini durdurur. Bu işlem iki diğer RNA türünü daha gerektirir: taşıyıcı RNA (tRNA) kodonun tanınmasına aracılık eder ve ona karşılık gelen amino asiti getirir; ribozomal RNA (rRNA) ise ribozomdaki protein imalat mekanizmasının kataliz merkezidir.

<span class="mw-page-title-main">Taşıyıcı RNA</span> protein sentezinde görevli bir RNA

Taşıyıcı RNA hücrelerde protein sentezi sırasında büyüyen polipeptit zincirine spesifik bir amino asit ekleyen küçük bir RNA molekülüdür. Amino asidin bağlanması 3' ucundadır. Bu kovalent bağlantı aminoasil tRNA sentetaz tarafından katalizlenir. Ayrıca, antikodon olarak adlandırılan üç bazlık bir bölge vardır, bu bölge mRNA üzerinde kendisine karşılık gelen üç bazlık bir kodon bölgesi ile baz eşleşmesi yapar. Her tip tRNA molekülü sadece tek tip bir amino asite bağlanabilir, ama genetik kod aynı amino asite karşılık gelen birden çok kodon bulunduğu için, farklı antikodonlara sahip tRNA'lar aynı amino asidi taşıyabilir.

<span class="mw-page-title-main">Ribozomal RNA</span> Ribozomun RNA bileşeni

Ribozomal RNA (rRNA), ribozomlarda bulunan bir RNA tipidir, ribozomun protein senteziyle ilişkili katalitik fonksiyonundan sorumludur. Ribozomal RNA'nın görevi, mRNA'daki bilginin translasyon süreci sırasında amino asit dizisine çevrilmesi için taşıyıcı RNA (tRNA) ile etkileşmek ve uzayan peptit zincirine amino asit takmaktır. Hücre sitoplazmasında serbest halde bulunan RNA'nın %80'i rRNA'dan oluşur.

<span class="mw-page-title-main">Protein biyosentezi</span>

Protein biyosentezi, hücrenin protein sentezlenmesi için gereken bir biyokimyasal süreçtir. Bu terim bazen sadece protein translasyonu anlamında kullanılsa da transkripsiyon ile başlayıp translasyonla biten çok aşamalı bir süreçtir. Prokaryotlarda ve ökaryotlarda ribozom yapısı ve yardımcı proteinler bakımından farklılık göstermesine karşın, temel mekanizma korunmuştur.

<span class="mw-page-title-main">Nükleik asit</span> bilinen tüm yaşam için gerekli olan büyük biyomoleküller sınıfı

Nükleik asitler, bütün canlı hücrelerde ve virüslerde bulunan, nükleotid birimlerden oluşmuş polimerlerdir. En yaygın nükleik asitler deoksiribonükleik asit (DNA) ve ribonükleik asit (RNA)'dır. İnsan kromozomlarını oluşturan DNA milyonlarca nükleotitten oluşur. Nükleik asitlerin başlıca işlevi genetik bilgi aktarımını sağlamaktır.

<span class="mw-page-title-main">Kodon</span>

Kodon, bütün yaşayan canlıların genomları DNA'larında kaydedilmiştir. Genomun bir protein ya da RNA molekülünün yapılması için gerekli şifreyi içeren kısımları gen olarak adlandırılır. Proteinlerin sentezlenmesi için gerekli olan kodu içeren genler üçer nükleotidden oluşan kodonlardan oluşmaktadırlar. Her bir kodon protein sentezlenişi esnasında belli bir amino asitin kodunu içerir. Aşağıdaki tablo, hangi kodonların hangi aminoasitleri kodladıklarını göstermektedir.

<span class="mw-page-title-main">Transkripsiyon (genetik)</span> bir DNA parçasının RNAya kopyalanması süreci

Transkripsiyon, yazılma veya yazılım, DNA'yı oluşturan nükleotit dizisinin RNA polimeraz enzimi tarafından bir RNA dizisi olarak kopyalanması sürecidir. Başka bir deyişle, DNA'dan RNA'ya genetik bilginin aktarımıdır. Protein kodlayan DNA durumunda, transkripsiyon, DNA'da bulunan genetik bilginin bir protein veya peptit dizisine çevirisinin ilk aşamasıdır. RNA'ya yazılan bir DNA parçasına "transkripsiyon birimi" denir. Transkripsiyonda hata kontrol mekanizmaları vardır, ama bunlar DNA çoğalmasındakinden daha az sayıda ve etkindirler; dolayısıyla transkripsiyon DNA çoğalması kadar aslına sadık değildir.

RNA polimerazlar, bir DNA veya RNA molekülündeki bilgiyi RNA molekülü olarak kopyalayan bir enzimler ailesidir. Bir gende yer alan bilginin RNA molekülü olarak kopyalanma işlemi transkripsiyon olarak adlandırılır. Hücrelerde RNAP genlerin RNA zincirleri halinde okunmasını sağlar. RNA polimeraz enzimleri, tüm canlılarda ve çoğu virüste bulunur. Kimyasal bir deyişle, RNAP, bir nükleotidil transferaz enzimidir, bir RNA molekülünün üç ucunda ribonükleotitlerin polimerleşmesini sağlar.

<span class="mw-page-title-main">Doğrultu (moleküler biyoloji)</span>

Moleküler biyolojide doğrultu, bir nükleik asit ipliğini oluşturan nükleotitlerin uçuca eklenme yönüyle ilişkildir. Kimyasal adlandırma konvansiyonu gereği, bir nükleotit şeker halkasındaki karbon atomları 1', 2', 3', 4' ve 5' olarak adlandırılır. Nükleik asitlerin doğada sentezlenmeleri sırasında büyüyen zincirin bir ucundaki şeker grubunun serbest bir 3' hidroksil (-OH) grubu vardır, öbür ucundaki şekerin ise serbest bir 5'-OH grubu vardır. Bu iki uca, sırasıyla 3' ve 5' uçları denir. Nükleik asidin sentezi sırasında polimeraz enzimi 3'-OH grubuna bir fosfodiester bağı ile yeni bir nükleotit bağlar. Konvansiyon olarak bir iplikli DNA ve RNA dizileri yazılırken bazların kısaltmaları 5'-3' doğrultusunda yazılır.

<span class="mw-page-title-main">Denatürasyon</span>

Denatürasyon, protein veya nükleik asitlerin doğal yapısında mevcut olan sekonder, tersiyer ve kuaterner yapılarının bazı fiziksel ve kimyasal dış etkilerle bozularak primer yapılarına dönüşmeleri sürecidir. Canlı bir hücredeki proteinlerin denatüre olması, hücresel aktivitelerde bozulma ve belki de hücrenin ölümüyle sonuçlanır.

<span class="mw-page-title-main">Genetik kod</span> genetik materyal içinde kodlanan bilginin proteinlere çevrildiği kurallar

Genetik kod, genetik malzemede kodlanmış bilginin canlı hücreler tarafından proteinlere çevrilmesini sağlayan kurallar kümesidir. Kod, kodon olarak adlandırılan üç nükleotitlik diziler ile amino asitler arasındaki ilişkiyi tanımlar. Bir nükleik asit dizisindeki üçlü kodon genelde tek bir amino asidi belirler. Genlerin çok büyük çoğunluğu aynı kodla şifrelendiği için, özellikle bu koda kuralsal veya standart genetik kod olarak değinilir, ama aslında pek çok kod varyantı vardır. Yani, standart genetik kod evrensel değildir. Örneğin, insanlarda, mitokondrilerdeki protein sentezi kuralsal koddan farklı bir genetik koda dayalıdır.

L- Selenosistein Sec ya da U şeklinde kısaltılır ve L-Amino asitlerinin 21. proteinogenidir. Bu amino asit L-Sistein’den farklı olarak kükürt atomunun yerine Selenyum atomu barındırır. D-Selenosistein möleküle L- Selenosistein’ın enantiyomerisidir ve önem bakımından pek fazla önemli değildir. Bu yüzden bu yazıda ya da bilimsel makalelerde Selenosistein L- ya da D- olarak hiçbir ön ek almayarak sadece Selenosistein diye bahsedilmişse, burada bahsi geçen L- Selenosistein’dir.

<span class="mw-page-title-main">Santral dogma (moleküler biyoloji)</span> Biyolojik bir sistem içindeki genetik bilgi akışının açıklanması

Moleküler biyolojinin santral (merkezi) dogması, biyolojik bir sistem içindeki genetik bilgi akışının bir açıklamasıdır. Orijinal anlamı bu olmasa da, genellikle "DNA RNA'yı, RNA proteini yapar" şeklinde ifade edilir İlk olarak 1957'de Francis Crick tarafından ifade edilmiş, 1958'de ise yayınlanmıştır.

Biyosentez, substratların canlı organizmalarda daha karmaşık ürünlere dönüştürüldüğü çok aşamalı, enzim katalizli bir süreçtir. Biyosentezde basit bileşikler modifiye edilir, diğer bileşiklere dönüştürülür veya makromoleküller oluşturmak üzere birleştirilir. Bu süreç genellikle metabolik yollardan oluşur. Bu biyosentetik yollardan bazıları tek bir hücresel organel içinde yer alırken diğerleri birden fazla hücresel organel içinde yer alan enzimleri içerir. Bu biyosentetik yolların örnekleri arasında çift katlı lipit katmanının bileşenlerinin ve nükleotidlerin üretimi yer alır. Biyosentez genellikle anabolizma ile eş anlamlıdır ve bazı durumlarda birbirinin yerine kullanılır.

<span class="mw-page-title-main">Aminoasil-tRNA</span>

Aminoasil-tRNA, aynı kökenli amino asidinin kimyasal olarak bağlı (yüklü) olduğu tRNA'dır. aa-tRNA, belirli uzama faktörleriyle birlikte, translasyon sırasında üretilen polipeptit zincirine dahil edilmek üzere amino asidi ribozoma iletir.

<span class="mw-page-title-main">Anlamsız mutasyon</span>

Anlamsız mutasyon veya Durma mutasyonu, protein üretiminin beklenenden önce son bulmasıyla kısa ve bitirilmemiş bir protein oluşmasına sebep olan bir çeşit nokta mutasyonu. Normal bir translasyon sürecinin son bulması için ribozomun durdurma kodonunu okuması gerekir. Bu gerçekleştiğinde süreç son bulur ve istenen amino asit zinciri üretilmiş olur. Ancak ribozom beklenenden önce bu kodona rastlarsa süreç erkenden son bulur. Buna sebep olan ise DNA dizisinde yaşanan bir nokta mutasyon sebebiyle bir amino asidi kodlayan kodonun bir bitirme kodonuna veya farklı bir şeye dönüşmesidir. İnsanlarda ve diğer memelilerde görülen kısa veya işlevsiz proteinlerinin başlıca sebeplerinden biridir.

Durdurma kodonu, translasyon sürecini sonlandıran bir kodon. Kodonlar üçer nükleotitten oluşur ve amino asitleri kodlar. Translasyon sürecini bitiren üç çeşit durdurma kodonu vardır. Süreç, ribozomun mRNA'daki başlama kodonunu okumasıyla başlar ve durdurma kodonunu okumasıyla sonlanır ve amino asit zinciri tamamlanmış olur. Bazen bir nokta mutasyonu bu kodonu meydana getirir ve translasyon süreci beklenenden önce son bulur.