İçeriğe atla

Transform fay

Bir transform fay veya transform fay sınırı, hareketin ağırlıklı olarak yatay olduğu bir plaka sınırı boyunca süregelen bir faydır.[1] Başka bir plaka sınırına, bir dönüşüme, yayılma sırtına veya bir batma bölgesine bağlandığı yerde aniden sona erer.[2]

İki levha zıt yönlerde hareket ederken bir dönüşüm Transform fayı gösteren resim
Transform faylar (Kırmızı Çizgiler)

Bu tür fayların çoğu, farklı sınırların kesimleri arasındaki yanal ofseti barındıran ve zikzak deseni oluşturan okyanus kabuğunda bulunur. Bu, hareket yönünün genel ıraksak(uzaklaşan) sınırın eğilimine dik olmadığı eğik deniz tabanının yayılmasının bir sonucudur. Karalarda denizlere oranla daha az sayıda fay bulunur fakat karadaki faylar insan yaşamını daha çok etkilediği için örneğin San Andreas Fay Hattı genellikle daha iyi bilinir. Transform fay bir levha sınırı oluşturan özel bir doğrultulu fayın özel bir halidir.

Terminoloji

Transform sınırları dünya üzerinde muhafazakâr levha sınırları olarak da bilinir çünkü dünya yüzeyine eklenmezler veya kaybolmazlar.[3]

Arka plan

Bu kavram, J. Tuzo Wilson tarafından, Uzaklaşan Levha Sınırları ve Çarpışan Levha Sınırları'nın hareketlerini tamamlayan geniş fay zonları olarak öngörülmüştür.[4] Transform fayları olarak adlandırılan yeni fay sınıfı,[5] bir jeolojik özelliğin standart yorumundan tahmin edilebileceğinden ters yönde kayma oluşturur. Transform fayları boyunca kayma, ayırdığı sırtlar arasındaki mesafeyi arttırmaz; sırtlar yayılma merkezleri olduğu için depremlerde mesafe sabit kalır. Bu hipotez, klasik yorumlamanın önereceğinden daha ters yönde Transform fayları noktalarındaki kaymayı gösteren fay düzlemi çözümlerinin bir çalışmasında doğrulanmıştır.[6]

Transform ve Çapraz Fay Arasındaki Fark

Transform Fay

Transform fayları, çapraz faylar ile yakından ilişkilidir ve yaygın olarak karıştırılır. Her iki fay tipi de doğrultu atımlı fay kayması veya hareket hâlinde yan yana hareket hâlindedir bununla birlikte, transform fayları her zaman başka bir levha sınırıyla birleşme noktasında sonlanırken, çapraz faylar başka bir fay ile birleşme olmadan ölebilir.Son olarak, transform fayları, tektonik bir levha sınırı oluştururken, çapraz faylar oluşturmaz.

Çapraz Fay

Transform Fay Mekaniği

Hareketler ağırlıklı olarak ya iç yönde sol atılımlı ya da sağ atılımlıdır. Transform faylar büyük levha sınırlarında sonlanırlar.Fay boyunca gelişen göreceli kayma, ya okyanus ortası sırtlarında oluşan kabuk ya da kabuğun dalma-batma zonundaki tahribatı ile dengelenir.Okyanus sırtları zayıf yerlere sıçrama yaptığında birbirine yanal atımlı faylarla bağlanırlar. Bu fayların doğrultuları hemen hemen sırtlara diktirler, yani, dönüşüm yapmışlardır. Bu nedenle bu faylara transform faylar denir. Faylar yanal atım yapmışlardır. Levhaların birbirine temas ettiği, birbirini ittiği veya diğerinin altına daldığı iki levha arasında, harekete engel olan bir sürtünme kuvveti vardır.

Örnekler

Transform faylar, yaygın olarak okyanus ortası sırtlarında veya yayılma merkezlerinin bağlantı kısımlarında bulunur. Okyanus ortası sırtları deniz tabanındaki bazaltik magmanın yükselmesi nedeniyle oluşur.Yeni deniz tabanı itilme-çekilme hareketi yaparken, eski deniz tabanı yavaş yavaş okyanus ortasındaki sırtlardan kıtalara doğru kayar.Çok kısa mesafeden ayrılmış olsa da, sırtların bölümleri arasındaki bu ayrım, deniz tabanının bölümlerinin birbirine zıt yönlerde itilmesine neden olur.Deniz tabanlarının birbirini geçen bu yanal hareketi, transform fayların şu anda aktif olduğu yerdir. Transform hataları orta okyanus sırtında bir grev kayma fay farklı hareket. Bunun yerine birbirinden uzaklaşan sırtların, diğer grev kayma faylarda olduğu gibi, transform-fay sırtlar aynı kalır, sabit yerlerde ve sırtlar oluşturulan yeni okyanus deniz tabanı sırttan uzağa itilir. Bu hareketin kanıtı deniz tabanındaki paleomanyetik şeritte bulunabilir. Jeofizikçi Taras Gerya tarafından yazılmış bir kağıt orta okyanus ridge sırtlar arasında Transfrom fay oluşturulması orta okyanus ridge döndürülmüş ve gerilmiş bölümleri atfedilen teorize. Bu, yayılma merkezi veya sırt yavaş yavaş düz bir çizgiden kavisli bir çizgiye deforme olan uzun bir süre boyunca gerçekleşir. Son olarak, bu düzlemler boyunca kırılma, hataları dönüştürür. Bu gerçekleştikçe, hata, genişlemeli gerilimli normal bir hatadan, yanal gerilimli bir grev kayma hatasına dönüşür. Bonatti ve Crane tarafından yapılan çalışmada, transform sırtlarının kenarlarında peridotit ve gabro kayaları keşfedilmiştir. Bu kayalar Dünya'nın manto içinde derin oluşturulur ve daha sonra hızla yüzeye çıkarıldı.Bu kanıt, okyanus ortasındaki sırtlarda yeni deniz tabanının oluşturulduğunu kanıtlamaya yardımcı olur ve plaka tektoniği teorisini daha da destekler. Aktif transfrom fayının iki tektonik yapı veya faylar arasındadır. Kırılma bölgeleri, daha önce aktif transform bölgesini geçen ve kıtalara doğru itilen daha önce aktif transform fay hatlarını temsil eder. Okyanus tabanındaki bu yükseltilmiş sırtlar yüzlerce mil boyunca ve bazı durumlarda bir kıtadan bir okyanustan diğer kıtaya kadar bile izlenebilir.

Orta okyanus sırt transform bölgelerinin en belirgin örnekleri, Güney Amerika ve Afrika arasındaki Atlantik Okyanusu'ndadır. St. Paul, Romanche, zincir ve yükseliş kırığı bölgeleri olarak bilinen bu alanlar, derin, kolayca tanımlanabilir transfrom fay ve sırtlarına sahiptir. Diğer yerler şunlardır: kuzeyde San Andreas Fayı ile buluşan Güneydoğu Pasifik Okyanusu'nda bulunan Doğu Pasifik sırtı. Transform hataları okyanus kabuğu ve yayılma merkezleri ile sınırlı değildir; birçoğu kıtasal marjlar üzerindedir. En iyi örnek, Amerika Birleşik Devletleri'nin Pasifik kıyısındaki San Andreas hatasıdır. San Andreas Fayı, Meksika'nın batı kıyısındaki (Kaliforniya Körfezi) Doğu Pasifik yükselişini, Kuzeybatı Amerika Birleşik Devletleri'nin kıyısındaki Mendocino üçlü kavşağına (Juan de Fuca plakasının bir parçası) bağlar ve bu da onu bir sırt-transform-stil hatası hâline getirir. San Andreas Fay sisteminin oluşumu, 34 milyon ila 24 milyon yıl önce Oligosen döneminde oldukça yakın bir zamanda meydana geldi. Bu dönemde, Farallon plakası, ardından Pasifik plakası, Kuzey Amerika plakasına çarpıştı. Çarpışma, Kuzey Amerika plakasının altındaki Farallon plakasının dalmasına yol açtı. Pasifik ve Farallon plakalarını ayıran yayılma merkezi Kuzey Amerika plakasının altına düştükten sonra, San Andreas Continental Transform-Fay sistemi oluşturuldu. Yeni Zelanda'da, Güney Adası'nın dağ hatası, uzunluğunun büyük bir kısmı için bir transfrom faydır. Bu, kuzey adası senklinalın katlanmış arazisinin birkaç yüz kilometre arayla doğu ve batı bir kesime bölünmesine neden oldu. Senklinalin büyük bir kısmı adanın güneydoğusundaki kuzey adası ve Catlins'de bulunur, ancak adanın kuzeybatıdaki Tasman Bölgesinde de daha küçük bir bölüm bulunur. Diğer örnekler:

Orta Doğu'nun Ölü Deniz Transform Fayı Pakistan'ın Chaman transform fayı Türkiye'nin Kuzey Anadolu transform fayı Kuzey Amerika Kraliçesi Charlotte transform fayı

Türler

Transfrom fay sistemleri üzerine yaptığı çalışmada jeolog Tuzo Wilson, Transfrom faylarının her iki uçtaki diğer hatalara veya tektonik plaka sınırlarına bağlanması gerektiğini; bu gereklilik nedeniyle, transfrom fay uzayabilir, sabit bir uzunluk tutabilir veya uzunluğunda azalabilir. Bu uzunluk değişiklikleri, hangi fay türünün veya tektonik yapının transform fayına bağlandığına bağlıdır. Wilson altı tip transform fayı tanımladı:

Büyüyen uzunluk: Bir transfrom fayın bir yayılma merkezini ve bir batma bölgesinin üst bloğunu bağladığı veya alt bölme bölgelerinin iki üst bloğunun bağlandığı durumlarda, Transfrom fay uzunluğu uzar. Sabit uzunluk: Diğer durumlarda, transform fayı sabit bir uzunlukta kalacaktır. Bu kararlılık birçok farklı nedene bağlanabilir. Sırt-sırt dönüşümleri durumunda, sabitlik, her iki çıkıntının dışa doğru sürekli büyümesinden kaynaklanır ve uzunluktaki herhangi bir değişikliği iptal eder. Tersi, sırt tarafından oluşturulan tüm litosferin (yeni deniz zemini) alt bölme bölgesi tarafından bastırıldığı veya yutulduğu bir alt plakaya bağlı bir sırt meydana gelir. Son olarak, iki üst alt bölme plakası bağlandığında, uzunlukta bir değişiklik olmaz. Bunun nedeni plakaların birbirine paralel hareket etmesidir ve bu uzunluğu değiştirmek için yeni bir litosfer oluşturulmamıştır. Uzunluk hatalarının azaltılması: Nadir durumlarda, dönüşüm hataları uzunluğa büzülebilir. Bunlar, inen iki alt plaka, bir transform fayı ile bağlandığında meydana gelir. Plakalar azaltıldığı zaman, transform fayı tamamen ortadan kalkıncaya kadar transform fayı uzunluğu azalacak ve sadece iki alçalma bölgesi zıt yönlere bakacaktır.

Görüldüğü Yerler

Alp Transform Fayı

Kaynakça

  1. ^ Moores E.M.; Twiss R.J. (2014). Tectonics. Waveland Press. p. 130.
  2. ^ Kearey, K. A. (2007). Global Tectonics. Hoboken, NJ, USA: John Wiley & Sons.
  3. ^ British Geological Survey (2020). "Plate Tectonics". Retrieved
  4. ^ Reid, H.F., (1910). The Mechanics of the Earthquake. in The California Earthquake of April 18,1906, Report of the State Earthquake Investigation Commission, Carnegie Institution of Washington, Washington D.C.
  5. ^ Wilson, J.T. (24 July 1965). "A new class of faults and their bearing on continental drift". Nature. 207 (4995): 343–347.
  6. ^ Sykes, L.R. (1967). Mechanism of earthquakes and nature of faulting on the mid-oceanic ridges, Journal of Geophysical Research, 72, 5–27

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Levha tektoniği</span> Litosferin yapısını inceleyen jeoloji dalı

Levha tektoniği } Dünya'nın litosfer'inin yaklaşık 3,4 milyar yıl öncesinden beri yavaş hareket eden birçok büyük tektonik levha içerdiği düşünülen genel kabul görmüş bilimsel bir teoridir.

<span class="mw-page-title-main">Orojenez</span> sıradağların oluşumunu açıklayan yerbilimsel terim

Orojenez, İç kuvvetlerin ortaya çıkma şekillerinden birini ifade eden orojenez terimi dağ oluşumu anlamına gelir.

<span class="mw-page-title-main">Tektonik</span>

Tektonik, yer kabuğunun yapısını, özelliklerini ve zaman içindeki gelişimini kontrol eden süreçtir. Özellikle, dağ inşası süreçlerini, kratonlar olarak bilinen kıtaların güçlü, eski çekirdeklerinin büyümesini, davranışını ve Dünya'nın dış kabuğunu oluşturan nispeten sert plakaların birbirleriyle etkileşme yollarını açıklar. Tektonik ayrıca küresel nüfusu doğrudan etkileyen deprem ve volkanik kuşakları anlamak için bir çevre sunmaktadır. Tektonik çalışmalar, fosil yakıtları ve metalik ve metalik olmayan kaynakların maden yataklarını arayan ekonomik jeologlar için kılavuz olarak önemlidir. Erozyon kalıplarını ve diğer Dünya yüzey özelliklerini açıklamak için jeomorfologlar için tektonik prensiplerin anlaşılması şarttır.

<span class="mw-page-title-main">Atlantik Ortası Sırtı</span> Atlas Okyanusunda deniz seviyesinin altında uzanan dağ silsilesi

Atlantik Ortası Sırtı ya da Atlantik Ortası Yükselimi Atlas Okyanusu'nun ortasında, tüm taban boyunca uzanan, büyük bölümü sular altında bulunan sıradağ kümesi ve okyanus ortası sırtıdır. Kuzey Kutbu'nun 333 kilometre güneyinde 87° Kuzey'den başlayarak 54° Güney'deki Bouvet Adası'na kadar uzanır. Dağların yüksek bölümleri yer yer su yüzeyine çıkarak okyanusta adalar oluşturur. İzlanda bu şekilde oluşmuştur. Yükselim 1950'lerde Marie Tharp ve Bruce Heezen tarafından bulunmuştur. Bu oluşumun bulunması Alfred Lothar Wegener'ın Kıta Kayması Teorisinin geliştirilmiş hali olan Levha hareketleri kuramının dünyaca kabul görmesini sağlamıştır.

<span class="mw-page-title-main">1906 San Francisco depremi</span> 18 Nisan 1906 Çarşamba günü yerel saate göre sabaha karşı 5:12de vuran yüksek şiddetli deprem

1906 San Francisco depremi San Francisco, CA ve Kuzey Kaliforniya'yı 18 Nisan 1906 Çarşamba günü yerel saate göre sabaha karşı 5.12'de vuran yüksek şiddetli depremdir. Depremin büyüklüğü genel olarak 7,9 Mw kabul edilir. Buna karşın depremin büyüklüğü en az 7,7 Mw en fazla 8,25 Mw olarak ileri sürülmüştür. Esas sarsıntı merkezi şehrin 2 mil (3 km) uzağında, denizdeki Mussel Kayalıkları'dır. Bölge; San Andreas Fay Hattı'ndan kaynaklanan bu depremle kuzey-güney doğrultusunda 296 mil (477 km) ikiye ayrılmıştır. Sarsıntı Oregon'dan Los Angeles'a; hatta denizden oldukça uzak olan Nevada'nın merkezine kadar geniş bir alanda hissedilmiştir. Deprem ve sonucunda oluşan büyük yangın, Amerika Birleşik Devletleri tarihinde meydana gelen en kötü doğal afet olarak kabul edilir. Deprem ve bunun sonucunda oluşan yangın sebebiyle ölenlerin sayısının 3.000'den fazla olduğu tahmin edilmiştir. Bu rakam Kaliforniya tarihinde bir doğal afetten dolayı ölen en fazla kişi sayısıdır. Depremin ekonomik etkileri, yakın geçmişte meydana gelen Katrina Kasırgası ile benzerlik göstermektedir.

<span class="mw-page-title-main">Doğu Anadolu Fay Hattı</span> fay hattı

Doğu Anadolu Fay Hattı, Türkiye'nin doğusunda olan doğrultu atımlı bir fay hattıdır. Anadolu Levhası ile kuzeye doğru hareket eden Arap Levhası arasındaki dönüşüm tipi tektonik sınırı oluşturur. İki levhanın göreli hareketlerindeki fark, fay boyunca sol yanal harekette kendini gösterir. Doğu ve Kuzey Anadolu fayları, Avrasya Levhası ile devam eden çarpışma nedeniyle sıkıştırılan Anadolu Levhasının batıya doğru hareketini birlikte barındırır.

<span class="mw-page-title-main">Kıta kayması</span> Kıtaların bir zamanlar parçalanan ve şimdi yavaşça birbirinden uzaklaşan büyük bir kara alanı olduğu kuramı

Kıta Kayması Teorisi, 1912'de Alman meteorolog Alfred Wegener tarafından ortaya konulmuş olan ve kıtaların hareket halinde olduğunu ve bugünkü durumunu böylece aldığını öne süren bir teoridir. Kıta kayması, kıtaların birbirlerine ve okyanus havzalarına göre girmiş olduğu büyük ölçekli yatay hareketlerdir.

<span class="mw-page-title-main">Okyanus ortası sırtı</span>

Okyanus ortası sırtı; levha tektoniği tarafından oluşturulan omurgası boyunca uzanan tipik bir vadi olarak bilinen ve çeşitli sıra dağları içeren su altı dağ sistemi için kullanılan genel bir terimdir. Bu tip okyanussal sırtlar deniz tabanı yayılmasına neden olan okyanussal yayılma merkezi olarak bilinen bir karakteristiktir. Okyanussal kabuk, lav olarak yükselme, soğutma üzerine yeni bir kabuk oluşturma, okyanus kabuğundaki lineer bir zayıflıkta magma olarak mantoda yükselmesine neden olan konveksiyonel akımlardan dolayı deniz tabanı yükselmesi ile oluşur. Bu okyanus ortası sırtı sonuç olarak farklı iki tektonik plakayı birbirinden ayırır.

<span class="mw-page-title-main">Okyanus çukurlukları</span>

Derin okyanus çukurları, binlerce km uzunluğunda dar alanlardır ve okyanusların en derin kesimlerini oluştururlar. Bunlara denizaltı vadileri de denir. Hendeklerin çoğu Pasifik Okyanusu’nda yer alır ve bazılarının derinliği 10.000 m’yi geçer. Örneğin Mariana Hendeği’ndeki Challenger Çukuru’nun derinliği 11.022 m olarak ölçülmüştür. Challenger Çukuru, dünya okyanuslarında yer alan en derin çukur olarak bilinmektedir. Derin okyanus hendekleri, okyanus tabanlarının küçük bir bölümünü oluşturmasına karşılık çok önemli jeolojik yapılardır. Hendekler litosferik levhaların daldığı ve manto ya gömüldüğü levha yaklaşım alanlarıdır.Levhalardan biri diğerinin altına dalarken depremlerin yanı sıra volkanik aktivite de gelişir. Bu nedenle hendekler, volkanik ada yayı olarak bilinen yay şekilli aktif volkan kümelerine paralellik gösterir. Ayrıca And ve Cascade (Çağlayan) dağ sıralarının bir bölümünü oluşturan kıtasal volkanik yaylar da hendekler ile paralel bir gidiş gösterir. Pasifik Okyanusu kenarı boyunca gözlenen çok sayıda hendek ve ilişkili volkanik aktivite nedeniyle bu bölge ateş çemberi olarak adlandırılmıştır. Okyanus hendekleri genellikle okyanus tabanı seviyesinin 3-4 km altına kadar ulaşır.

<span class="mw-page-title-main">Anadolu levhası</span> Tektonik Plaka

Anadolu levhası, Avrasya levhası, Arap levhası, Afrika Levhası, Egeit levhası tarafından çevrelenen Anadolu'nun büyük kısmını kapsayan yerkabuğu parçasıdır.

<span class="mw-page-title-main">Afrika levhası</span>

Afrika levhası, Nubian Plakası olarak da bilinir, Afrika kıtasının büyük bölümünü ve batı ve güneydeki bitişik okyanus kabuğunu içeren büyük bir tektonik levhadır. Afrika levhası, dünyanın büyük tektonik levhalarından biridir. Litosfere ait karasal ve okyanusal tabanı birlikte barındırır. Güney Amerika, Kuzey Amerika, Avrasya, Arap, Hindistan, Avustralya ve Antarktika levhalarıyla çevrilidir. 200 milyon yıl önce Trias zamanında Pangea süper kıtasının parçalanması ile Gondvana kıtası oluşmuştur. Gondvana kıtasının parçalanması ile Afrika, G. Amerika, Hindistan, Antarktika ve Avustralya kıtaları oluşmuştur.

<span class="mw-page-title-main">Uzaklaşan levha sınırı</span>

Uzaklaşan levha sınırı, levha tektoniğinde farklı sınır ya da farklı plaka sınırları birbirinden uzaklaşmakta olan iki tektonik plaka arasında var olan doğrusal bir alandır. Okyanus tabanlarında okyanus ortası sırtı, karaların iç kısımlarında Büyük Rift Vadisi gibi kıta içi rift kuşakları oluştururlar.

<span class="mw-page-title-main">Deniz tabanı yayılması</span>

Deniz tabanı yayılması, deniz tabanından yayılan yeni okyanus kabuğunun volkanik aktivite ile oluşup, sonra yavaş yavaş tepeden hareket ettikten sonra, okyanus ortası sırtlarla ortaya çıkan bir süreçtir. Deniz dibi yayılması, levha tektoniği teorisi, kıtaların kayması açıklamaya yardımcı olur. Okyanusal plakaları sapmak, tensional stres kırıkları kabuğunun oluşmasına neden olur. Bazaltik magma yeni deniz tabanı forma okyanus tabanında kırıklar ve soğur yükselir. Büyük kayalar küçük kayalar yakın yayılan bölgeyi tespit edilecek süre yayılan bölgesinden uzakta bulunacaktır.

<span class="mw-page-title-main">Deniz yatağı</span> Okyanusun dibi

Deniz yatağı, deniz tabanı veya okyanus tabanı, okyanusun dibidir.

<span class="mw-page-title-main">Yakınlaşan levha sınırları</span>

Yakınsak bir sınır Dünya üzerinde iki veya daha fazla litosfer plakasının çarpıştığı bir alandır. Bir plaka sonunda diğerinin altına kayar ve batma olarak bilinen bir işleme neden olur. Batırma bölgesi, Wadati – Benioff bölgesi adı verilen birçok depremin meydana geldiği bir düzlemle tanımlanabilir. Bu çarpışmalar milyonlarca ila on milyonlarca yıl arasında gerçekleşir ve volkanizmaya, depremlere, orojeneze, litosferin yok edilmesine ve deformasyona yol açabilir. Yakınsama sınırları okyanus-okyanus litosferi, okyanus-kıta litosferi ve kıta-kıta litosferi arasında meydana gelir. Yakınsak sınırlarla ilgili jeolojik özellikler kabuk türlerine bağlı olarak değişir.

<span class="mw-page-title-main">Adriyatik levhası</span>

Adriyatik veya Puglia levhası, Kretase döneminde büyük bir transform fay boyunca Afrika levhasından kopan ve esas olarak kıta kabuğunu taşıyan küçük bir tektonik levhadır. Adriyatik levhası adı genellikle levhanın kuzey kısmına atıfta bulunulduğunda kullanılır. Adriyatik/Puglia levhası, Avrasya levhası ile çarpıştıktan sonra, plakanın bu kısmı Alpin Orojenezi sırasında deforme oldu.

<span class="mw-page-title-main">Üçlü eklem</span> Üç tektonik levhanın sınırlarının birleştiği nokta

Üçlü eklem ya da üçlü kavşak, üç tektonik plakanın sınırlarının buluştuğu noktadır. Üçlü kavşakta, üç sınırın her biri üç tipten biri olacaktır - sırt (R), çukur (T) veya transform fay (F) - ve üçlü kavşaklar, içlerinde birleşen plaka marjı tiplerine göre tanımlanabilir.. On olası üçlü bağlantı türünden yalnızca birkaçı zaman içinde kararlıdır. Dört veya daha fazla plakanın bir araya gelmesi de teorik olarak mümkündür, ancak bağlantı noktaları yalnızca anlık olarak var olacaktır.

Mega bindirmeli depremler, bir tektonik plakanın diğerinin altına doğru zorlandığı yakınsak plaka sınırlarında meydana gelir. Depremler, iki plaka arasındaki teması oluşturan bindirme fayı boyunca yaşanan kaymadan ötürü kaynaklanır. Bu levhalar arası depremler, 9.0'ı geçebilen moment büyüklükleri (Mw) ile gezegenin en güçlü depremleridir. 1900'den bu yana, büyüklüğü 9.0 veya daha büyük olan tüm depremler, mega bindirmeli depremlerdir.

<span class="mw-page-title-main">Kıta kenarı</span>

Kıta kenarı, kıyı suları altında okyanus kabuğuna bitişik kıtasal kabuğun dış kenarıdır. Okyanus tabanının üç ana bölgesinden biridir, diğer ikisi derin okyanus havzaları ve okyanus ortası sırtlardır. Kıta kenarı üç farklı özellikten oluşur: kıta yükselişi, kıta eğimi ve kıta sahanlığı. Kıta sahanlığı, kıtaların yakınında bulunan görece sığ su alanıdır. Kıta kenarları, okyanus alanının yaklaşık %28'ini oluşturur.

Denizaltı veya su altı depremi, bir su kütlesinin içinde, özellikle de okyanusun dibinde meydana gelen bir depremdir. Tsunamilerin başlıca nedeni bu tarz depremlerdir. Büyüklük, moment büyüklüğü ölçeği kullanılarak bilimsel olarak ölçülebilir ve şiddeti, Mercalli şiddet ölçeği kullanılarak belirlenebilir.