İçeriğe atla

Toplam beklenti yasası

Toplam beklenti yasası, olasılık kuramında, yinelemeli beklenti yasası, kule kuralı, düzleştirme teoremi gibi çeşitli isimlerine de rastlanan öneri.

Bu oneriye gore: Eğer X; E(| X |) < ∞ koşulunu sağlayan (yani entegrallenebilir) bir rassal değişken ve Y (mutlaka entegrallenebilir olmayan) herhangi bir rassal değişken ise, aynı olasılık uzayında

sağlanır.

Yani, X in Y bilindiğindeki koşullu matematiksel beklentisinin matematiksel beklentisi, X in matematiksel beklentisine eşittir.

Toplam olasılık yasası ile paralel bir önermedir. Bkz. Toplam varyans yasası, varyansın bileşenlerine ayrılması.

(Koşullu matematiksel beklenti E(X | Y) nin kendisi Y nin değerine bağlı bir rassal değişkendir. Y = y olayı bilindiğine göre X in koşullu matematiksel beklenti değeri y nin bir fonksiyonudur. Eğer E(X | Y = y) = g(y) yazarsak, rassal değişken E(X | Y) de; g(Y) olur.)

Ayrıklı halde kanıt

E[E[X | Y]] = Σy ( E[X | Y = y]P{Y = y} )
=Σy Σx ( xP{X = x | Y = y}P{Y = y} )
=Σy Σx ( xP{X = x, Y = y} )
=Σx x Σy P{X = x, Y = y}
=Σx xP{X = x}
=E[X]

Ayrıca bakınız

  • Koşullu beklenti
  • Toplam yığımlılık yasası
  • Toplam varyans yasası
  • Varyansın bileşenlerine ayrılması

Dışsal kaynaklar

İlgili Araştırma Makaleleri

Olasılık kuramı ve istatistik bilim dallarında varyans bir rassal değişken, bir olasılık dağılımı veya örneklem için istatistiksel yayılımın, mümkün bütün değerlerin beklenen değer veya ortalamadan uzaklıklarının karelerinin ortalaması şeklinde bulunan bir ölçüdür. Ortalama bir dağılımın merkezsel konum noktasını bulmaya çalışırken, varyans değerlerin ne ölçekte veya ne derecede yaygın olduklarını tanımlamayı hedef alır. Varyans için ölçülme birimi orijinal değişkenin biriminin karesidir. Varyansın karekökü standart sapma olarak adlandırılır; bunun ölçme birimi orijinal değişkenle aynı birimde olur ve bu nedenle daha kolayca yorumlanabilir.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

<span class="mw-page-title-main">Standart sapma</span> İstatistikte bir varyasyon ölçüsü

Standart sapma, Olasılık kuramı ve istatistik bilim dallarında, bir anakütle, bir örneklem, bir olasılık dağılımı veya bir rassal değişken, veri değerlerinin yayılımının özetlenmesi için kullanılan bir ölçüdür. Matematik notasyonunda genel olarak, bir anakütle veya bir rassal değişken veya bir olasılık dağılımı için standart sapma σ ile ifade edilir; örneklem verileri için standart sapma için ise s veya s'

Rassal değişken kavramının geliştirilmesi ile, sezgi yoluyla anlaşılan şans kavramı, soyutlaştırarak teorik matematik analiz alanına sokulmuş ve bu geliştirilen matematik kavram ile olasılık kuramı ve matematiksel istatistiğin temeli kurulmuştur.

Merkezi limit teoremi büyük bir sayıda olan bağımsız ve aynı dağılım gösteren rassal değişkenlerin aritmetik ortalamasının, yaklaşık olarak normal dağılım göstereceğini ifade eden bir teoremdir. Matematiksel bir ifadeyle, bir merkezi limit teoremi olasılık kuramı içinde bulunan bir zayıf yakınsama sonucu setidir. Bunların hepsi, birçok bağımsız aynı dağılım gösteren rassal değişkenlerin herhangi bir toplam değerinin limitte belirli bir "çekim gücü gösteren dağılıma" göre dağılım gösterme eğiliminde olduğu gerçeğini önerir.

<span class="mw-page-title-main">Binom dağılımı</span>

Olasılık kuramı ve istatistik bilim kollarında, binom dağılımı n sayıda iki kategori (yani başarı/başarısızlık, evet / hayır, 1/0 vb) sonucu veren denemelere uygulanır. Araştırıcının ilgi gösterdiği kategori başarı olarak adlandırılır. Bu türlü her bir deneyde, bağımsız olarak, başarı (=evet=1) olasılığının p olduğu (ve yalnızca iki kategori sonuç mümkün olduğu için başarısızlık olasılığının 1 - p olduğu) bilinir. Bu türlü bağımsız n sayıda denemeler serisi içinde elde edilen başarı sayısının ayrık olasılık dağılımı binom dağılım olarak tanımlanır. Bir binom dağılım sadece iki parametre ile, yani n ve p ile tam olarak tanımlanır. Matematik notasyon olarak bir rassal değişken X binom dağılım gösterirse şöyle ifade edilir:

X ~ B(n,p)

Bernoulli dağılımı olasılık kuramı ve istatistik bilim dallarında, p olasılıkla başarı ile 1 değeri alan ve olasılıkla başarısızlık ile 0 değeri alan bir ayrık olasılık dağılımıdır. İsmi ilk açıklamayı yapan İsviçreli bilim insanı Jakob Bernoulli anısına verilmiştir.

<span class="mw-page-title-main">Geometrik dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında geometrik dağılım şu iki şekilde ifade edilebilen ayrık olasılık dağılımıdır:

Bir olasılık dağılımı bir rassal olayın ortaya çıkabilmesi için değerleri ve olasılıkları tanımlar. Değerler olay için mümkün olan tüm sonuçları kapsamalıdır ve olasılıkların toplamı bire eşit olmalıdır. Örneğin, bir rassal olay olarak madeni paranın tek bir defa havaya atılıp yere düşmesi ele alınsın; değerler 'yazı' veya 'tura' veya bunlar isimsel değişken ölçeğinde ifade edilirse 0 (yazı) veya 1 (tura) olur; olasılıklar ise her iki değer için ½ olacaktır. Böylece madeni bir paranın tek bir defa atılma olayı için iki değer ve ilişkili iki olasılık bu rassal olayın olasılık dağılımı olur. Bu dağılım ayrık olasılık dağılımıdır; çünkü sayılabilir şekilde ayrı ayrı sonuçlar ve bunlara bağlı olan pozitif olasılıklar vardır.

Olasılık teorisi ya da ihtimaliyet teorisi rastgele olayların analizi ile ilgilenen bir matematik bilim dalıdır. Olasılık teorisinin ana ögeleri rassal değişkenler, saf rassal süreçler, olaylar olarak sayılabilir. Bunlar ya tek olarak ortaya çıkan veya bir zaman dönemi içinde gelişerek meydana gelen, ilk görünüşü rastgele bir şekilde olan deterministik olmayan olayların veya ölçülebilir miktarların matematiksel soyutlamalarıdır. Bir madeni parayı yazı-tura denemesi için havaya atmak veya bir zarı atmak ile ortaya çıkan sonuç ilk bakışta rastgele bir olay olarak görülebilirse bile eğer birbirini takip eden rastgele olaylar tekrar tekrar ortaya çıkartılırsa incelenebilecek ve tahmin edilebilecek belirli bir istatistiksel seyir takip ettikleri görülecektir. Bu türlü olaylar ve sonuçların seyirlerini betimleyen iki temsilci matematiksel sonuç büyük sayılar yasası ve merkezsel limit teoremidir.

Olasılık kuramı içinde, toplam olasılık yasası şöyle ifade edilir:

A için önsel (marjinal) olasılık, A' nın sonsal (koşullu) olasılığının beklenen değerine eşittir

Olasılık kuramı ve istatistik bilim dallarında bir rassal değişken X için olasılık yoğunluk fonksiyonu bir reel sayılı sürekli fonksiyonu olup f ile ifade edilir ve şu özellikleri olması gereklidir:

Olasılık kuramı içinde herhangi bir rassal değişken için karakteristik fonksiyon, bu değişkenin olasılık dağılımını tüm olarak tanımlar. Herhangi bir rassal değişken X için, gerçel doğru üzerinde, bu fonksiyonu tanımlayan formül şöyle yazılır:

<span class="mw-page-title-main">Büyük sayılar yasası</span>

Büyük Sayılar Kanunu ya da Büyük Sayılar Yasası, bir rassal değişkenin uzun vadeli kararlılığını tanımlayan bir olasılık teoremidir. Sonlu bir beklenen değere sahip birbirinden bağımsız ve eşit dağılıma sahip bir rassal değişkenler örneklemi verildiğinde, bu gözlemlerin ortalaması sonuçta bu beklenen değere yakınsayacak ve bu değere yakın bir seyir izleyecektir.

Matematik bilimi içinde moment kavramı fizik bilimi için ortaya çıkartılmış olan moment kavramından geliştirilmiştir. Bir bir reel değişkenin reel-değerli fonksiyon olan f(x)in c değeri etrafında ninci momenti şöyle ifade edilir:

Olasılık kuramı bilim dalında matematiksel beklenti veya beklenen değer veya ortalama birçok defa tekrarlanan ve her tekrarda mümkün tüm olasılıklarını değiştirmeyen rastgele deneyler sonuçlarından beklenen ortalama değeri temsil eder. Bir ayrık rassal değişkennin alabileceği bütün sonuç değerlerin olasılıklarıyla çarpılması ve bu işlemin bütün değerler üzerinden toplanmasıyla elde edilen değerdir. Bir sürekli rassal değişken için rassal değişken ile olasılık yoğunluk fonksiyonunun çarpımının aralığı belirsiz integralidir. Fakat dikkat edilmelidir ki bu değerin genel pratik anlamla rasyonel olarak beklenmesi pek uygun olmayabilir, çünkü matematiksel beklentiin olasılığı çok düşük belki sıfıra çok yakın olabilir ve hatta pratikte matematiksel beklenti bulunmaz. Ağırlıklı ortalama olarak da düşünülebilir ki değerler ağırlık katsayıları verilen olasılık kütle fonksiyonu veya olasılık yoğunluk fonksiyonudur.

Koşullu beklenti, koşullu beklenen değer veya koşullu ortalama, olasılık kuramı bilim dalında bir reel değerli rassal değişken için bir koşullu olasılık dağılımı na göre matematiksel beklentidir.

Olasılık kuramında iki olayın bağımsız olması bu olaylardan birinin gerçekleşme olasılığının diğer olayın gerçekleşip gerçekleşmediğine bağlı olmaması anlamına gelmektedir. Örneğin;

<span class="mw-page-title-main">Kovaryans matrisi</span>

İstatistik'te, kovaryans matrisi, rassal vektörlerin elemanları arasındaki kovaryansları içeren matristir. Kovaryans matrisi, skaler-değerli rassal değişkenler için var olan varyans kavramının çok boyutlu durumlara genelleştirilmesidir.

İstatistiksel yayılma ve sapma istatistik biliminde bir sayısal kantitatif değişkenin ölçülen veya ölçülebilen değerlerinin veya bir olasılık dağılımı'nın genel olarak veya bir merkez noktasından yaygınlığı veya değişebilirliği özelliğidir. İstatistiksel yayılma veya sapma kantitatif değişkenlerin veya rassal değişkenlerin diğer bir özelliği olan merkezsel konum ölçüleri ile birlikte istatistikçilerin en çok ilgilendikleri konulardır. Genel olarak günlük hayatta en çok kullanılan yayılma ölçüsü açıklık olmakla beraber, bunun gayet bariz olarak aykırı değerlerden çok etkilenmesi dolayısı ile çeyrekler açıklığı, standart sapma ve varyans gibi diğer çok kullanılan yayılma ölçüleri geliştirilmiştir.